

Matt Osmond & Graham Coop Center for Population Biology, UC Davis

Sweeps & hitchhikers

Maynard Smith & Haigh 1974, Kaplan et al. 1989

Sweeps & hitchhikers

Maynard Smith & Haigh 1974, Kaplan et al. 1989

Sweeps & hitchhikers

Maynard Smith & Haigh 1974, Kaplan et al. 1989

e.g., HIV drug resistance

Recombination

dips in diversity

e.g., Malaria drug resistance

Frevert et al. 2005 PLoS Biol., Margaret Shear

data from Nair et al. 2003 MBE

e.g., Drosophila insecticide resistance

Sedghifar et al. 2016 Genetics

Very severe stress

Frevert et al. 2005 PLoS Biol., Margaret Shear

Very severe stress

Frevert et al. 2005 PLoS Biol., Margaret Shear

Gomulkiewicz & Holt 1995 Evolution

Gomulkiewicz & Holt 1995 Evolution

Gomulkiewicz & Holt 1995 Evolution Wei et al. 1995 Nature

d = 0.05, s = 0.2

$$d = 0.05, N(0) = 10^4$$

$$p_{\text{coal}}(k,t) = {\binom{k}{2}} \frac{1}{N(t)p(t)}$$
$$p_{\text{rec}}(k,t) = k \frac{r}{2} [1-p(t)]$$

$$d = 0.05, N(0) = 10^4$$

$$p_{\text{coal}}(k,t) = {\binom{k}{2}} \frac{1}{N(t)p(t)}$$
$$p_{\text{rec}}(k,t) = k \frac{r}{2} [1-p(t)]$$

$$d=0.05, \ N(0)=10^4$$
 Osmond & Coop 12

$$p_{\text{coal}}(k,t) = {\binom{k}{2}} \frac{1}{N(t)p(t)}$$
$$p_{\text{rec}}(k,t) = k \frac{r}{2} [1-p(t)]$$

 $d = 0.05, N(0) = 10^4$

 $d = 0.05, N(0) = 10^4$

 $d = 0.05, N(0) = 10^4$

 $d = 0.05, N(0) = 10^4$

 $d = 0.05, N(0) = 10^4$

 $d = 0.05, N(0) = 10^4$

 $d = 0.05, N(0) = 10^4$

 $d = 0.05, N(0) = 10^4$

 $d = 0.05, N(0) = 10^4$

 $d = 0.05, N(0) = 10^4$

 $d = 0.05, N(0) = 10^4$

strong stress \implies

strong stress \implies

mmosmond@gmail.com