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Abstract5

Populations facing novel environments can persist by adapting. In nature, the ability to adapt6

and persist will depend on interactions between coexisting individuals. Here we use an adap-7

tive dynamic model to assess how the potential for evolutionary rescue is affected by intra-8

and interspecific competition. Intraspecific competition (negative density-dependence) lowers9

abundance, which decreases the supply rate of beneficial mutations, hindering evolutionary res-10

cue. On the other hand, interspecific competition can aid evolutionary rescue when it speeds11

adaptation by increasing the strength of selection. Our results clarify this point and give an12

additional requirement: competition must increase selection pressure enough to overcome the13

negative effect of reduced abundance. We therefore expect evolutionary rescue to be most14

likely in communities which facilitate rapid niche displacement. Our model, which aligns to15

previous quantitative and population genetic models in the absence of competition, provides a16

first analysis of when competitors should help or hinder evolutionary rescue.17

Keywords18

Adaptation, adaptive dynamics, competition, environmental change, mathematical model,19

persistence20



Rescue and competition Osmond & de Mazancourt 2

1 Introduction21

Individuals are often adapted to their current environment [1]. When the environment changes22

individuals may become maladapted, fitness may drop, and population abundances may decline23

[2]. If the changes in the environment are severe enough, populations may go extinct. But24

populations can also evolve in response to the stress and thereby return to healthy abundances25

[3, 4]. Why some populations are capable of rescuing themselves from extinction through26

evolution, while others go extinct, is a central question to both basic evolutionary theory and27

conservation [5].28

Ecological and evolutionary responses to changing environments are contingent on the com-29

munity in which the change occurs [6, 7, 8, 9, 10]. A population’s ability to adapt and persist30

in changing environments will therefore also hinge on the surrounding community [11] (see31

also [12], this issue). By including the ecological community in a formal theory of adapta-32

tion to changing environments, we may better predict the response of natural communities to33

contemporary stresses, such as invasive species [13, 14] and global climate change [15, 16].34

Competition reduces population abundance [17, 18, 19, 20]. Since less abundant popula-35

tions are more likely to go extinct when exposed to new environments [21, 22], competition36

may therefore lower the potential for evolutionary rescue. But competition can also increase37

selective pressure [23], speed niche expansion [24, 25, 26], and increase rates of evolution [27],38

possibly allowing populations to adapt to new conditions faster. These potentially contrasting39

effects may account for the unanticipated population dynamics and patterns of persistence in40

competitive communities [6] (but see [10]).41

Currently, most theory on adaptation to abrupt environmental change consider only isolated42

populations [3, 28, 29, 30, 31, 32, 33], and many of these studies assume unbounded popu-43

lation growth, thus ignoring intraspecific competition as well. The studies that do consider44

intraspecific competition, in the form of negative density-dependence, give inconsistent con-45

clusions, stating that density-dependence has no effect [29] or decreases [30, 34] persistence.46

Of the handful of studies that examine the effect of interspecific competition on adaptation to47

environmental change, nearly all predict slower adaptation and more extinctions (reviewed in48

[35]). One notable exception suggests that interspecific competition can aid persistence in a49
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continuously changing environment, by adding a selection pressure that effectively “pushes”50

the more adapted populations in the direction of the moving environment [36].51

Here we use the mathematical framework of adaptive dynamics to describe the evolutionary52

and demographic dynamics of a population experiencing competition and an abrupt change in53

the environment. Adaptive dynamics allows us to incorporate both intra- and interspecific54

competition in an evolutionary model while maintaining analytical tractability. We assess the55

potential for evolution to rescue populations by measuring the ‘time at risk’, i.e. the time a56

population spends below a critical abundance [3]. First, we derive an expression for the ‘time57

at risk’ in a population undergoing an abrupt change in isolation. We then compare our results58

to previous studies and test the robustness of our results by relaxing a number of simplifying59

assumptions using computer simulations. Finally, we examine how a population’s ability to60

adapt and persist to an abrupt environmental change is impacted by the presence of competing61

species.62

2 Model and Results63

2.1 One-population model64

We first examine how, in the absence of competitors, an asexual population with density- and65

frequency-dependent population growth responds to an abrupt change in the environment.66

We assume that each individual in the population has a trait value z, and that a phenotype’s67

growth rate is determined by both its own trait value as well as the trait value of all other68

individuals within the population. Population dynamics are described by the logistic equation69

(Equation 2 in [37])70

dni
dt

= niR
(
1−

∫
α(zi, zj)njdzj
k(zi, z∗)

)
(1)

where ni is the number of individuals with trait value zi, R is the per capita intrinsic growth71

rate, α(zi, zj) is the per capita competitive effect of individuals with trait zj on individuals72

with trait zi, and k(zi, z∗) is the carrying capacity of individuals with trait zi in an environment73

where the trait value giving maximum carrying capacity is z∗. We describe carrying capacity k74



Rescue and competition Osmond & de Mazancourt 4

as a Gaussian distribution (Equation 1 in [37])75

k(zi, z
∗) = Ke−(zi−z

∗)2/2σ2
k (2)

where K is the maximum carrying capacity and σk > 0 is the ‘environmental tolerance’, which76

describes how strongly carrying capacity varies with zi. For a given deviation from z∗, smaller77

variances σ2
k mean larger declines in carrying capacity k. We therefore refer to σ−2k as the78

strength of stabilizing selection. Data on yeast responses to salt [5, 38] fit Gaussian carrying79

capacity functions, as described by Equation 2 (ESM).80

We do not give a specific form for intraspecific competition α, but instead give requirements81

that are satisfied by a wide range of functions. First, we assume that individuals with the same82

trait value compete most strongly, that is d
dz
α(z, z) = 0 and d2

dz2
α(z, z) < 0. This is biologically83

reasonable and could describe, for instance, the effect of beak size on finches competing for84

seeds, where individuals with similar sized beaks compete strongly for similar sized seeds [39].85

And we abitrarily set α(z, z) = 1, meaning that individuals with the same trait value take up86

one ‘unit’ of carrying capacity.87

Trait value z is assumed to be determined by a large number of loci, each with equal and88

small effect, making the range of possible phenotypes continuous and unbounded (i.e., z ∈89

R). To proceed analytically, we first assume that mutations are rare. The population remains90

monomorphic, with all individuals having ‘resident’ trait value ẑ. The evolutionary trajectory91

is determined by the per capita growth rate of rare mutants in the neighborhood of ẑ (adaptive92

dynamics; [40]). When mutations are sufficiently rare, evolution occurs slow enough for us to93

consider the population at demographic equilibrium on an evolutionary timescale. This stands94

in contrast to previous models which jointly model demography and evolution (e.g., [3, 34]).95

The timescale separation between demography and evolution allows us to incorporate intra-96

and interspecific competition while maintaining analytical tractability. We later use computer97

simulations to examine how our analytical results perform when demography and evolution98

occur on similar timescales.99

In Appendix A we show that when d2

dz2
α(z, z) < σ−2k the ‘optimal trait value’ z∗ is both100

convergence stable (i.e., by small steps the resident trait converges to z∗) and evolutionary101
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stable (i.e., once ẑ = z∗ no other strategies can invade; z∗ is an ESS, sensu Maynard Smith102

and Price [41]). We assume d2

dz2
α(z, z) < σ−2k for the remainder of the paper, which means103

frequency-dependence is weak enough [42]. Our results apply for any function α, as long as z∗104

is both convergence and evolutionary stable.105

Let our population begin in a constant environment with optimal trait value z∗ = z∗0 . In106

time, all individuals become perfectly adapted ẑ = z∗0 . The population will reach equilibrium107

abundance ñ = K, and its growth rate will become zero (Figure 1). Let us call this original108

abundance K0.109

INSERT FIGURE 1 HERE110

Suppose then that the environment suddenly changes so that the new optimal trait value is111

z∗n 6= z∗0 . Our monomorphic population, with trait value ẑ=z∗0 , then immediately has equilib-112

rial abundance k(z∗0 , z
∗
n) < K0 (Figure 1). The environmental change serves to decrease the113

carrying capacity of the population. The population will initially survive the abrupt change if114

k(z∗0 , z
∗
n) ≥ 1 or, equivalently115

|z∗0 − z∗n| ≤ σk
√

2ln(K) ≡ 4z∗. (3)

Note that setting ñ ≥ 1 as the extinction threshold scales population abundance in units of116

minimal viable population size [43, 37]. Because z∗n is the new evolutionary and convergence117

stable strategy, if the population survives the change it will evolve toward the new optimal trait118

value, ẑ → z∗n. According to the canonical equation of adaptive dynamics [44], the monomor-119

phic trait value ẑ will change at rate120

dẑ

dt
=
µσ2

µ

2
ñ(ẑ, z∗n)g(ẑ, z

∗
n), (4)

where µ is the per capita per generation mutation rate, σ2
µ is the mutational variance (mutations121

symmetrically distributed with mean of parental value), and g(ẑ, z∗n) is the local fitness gradient122

(Appendix A):123

g(ẑ, z∗n) =
∂

∂zm

( 1

nm

dnm
dt

)∣∣
zm=ẑ

=
−R(ẑ − z∗n)

σ2
k

, (5)
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where nm and zm are a rare mutant’s abundance and trait value, respectively, and ẑ is the124

resident trait value [40]. The local fitness gradient describes the slope of the fitness function in125

the neighborhood of the parental trait value. Steeper slopes signify greater fitness differences126

between individuals with similar but unequal trait values [45]. Notice that R/σ2
k is the strength127

of stabilizing selection per unit time.128

The rate of change in trait value is then:129

dẑ

dt
= −

µσ2
µR(ẑ − z∗n)

2σ2
k

Ke−(ẑ−z
∗
n)

2/2σ2
k . (6)

We cannot solve Equation 6 explicitly for ẑ(t), but using a first-order Taylor expansion130

we derive an approximate solution, describing evolution and demography following the abrupt131

change (Appendix B):132

ẑ(t) ≈ z∗n + (z∗0 − z∗n)e
−µσ2µK0R

2σ2
k

t
. (7)

and133

ñ(t) = Kexp
[
−
(
(z∗0 − z∗n)e

−µσ2µK0R

2σ2
k

t
)2
/2σ2

k

]
. (8)

Taking the Taylor expansion about z∗0−z∗n = 0 results in the assumption that the environmental134

change |z∗0 − z∗n| is small relative to environmental tolerance σk (i.e., a weak ‘initial stress’).135

Our first-order approximation of the Gaussian k is therefore taken at the maximum z = 0,136

which is a line with slope zero and height K0. This means we assume mutational input µk137

is constant at µK0, effectively decoupling the demographic and evolutionary dynamics of the138

recovering population. Our first-order approximation is the highest-order for which we can139

obtain an analytical solution.140

Now, let Nc be the abundance below which demographic or environmental stochasticity are141

likely to cause rapid extinction [46, 3]. We use this heuristic Nc, in the place of stochastic142

models, for simplicity. We are interested in the amount of time a population spends below this143

threshold, i.e., how long the population is at risk of extinction.144

The population will never be at risk of extinction if its equilibrial abundance ñ remains145
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above the critical abundance Nc. In this model equilibrial abundance strictly increases in evo-146

lutionary time in a constant environment. Abundance is therefore at a minimum immediately147

following the abrupt shift in the environment. The population will avoid all chance of extinction148

if Nc < k(z∗0 , z
∗
n) or, rearranging,149

|z∗0 − z∗n| < σk

√
2ln
(K
Nc

)
≡ 4z∗∗. (9)

Here, we are most interested in the case where the population initially survives the abrupt150

change but abundance drops below the critical abundance: 4z∗∗<|z∗0−z∗n|≤4z∗, as this is151

when evolution is required to rescue populations from extinction.152

From Equation 2 we can find the trait value zNc required for a carrying capacity of Nc.153

Plugging zNc into Equation 7 and solving for t gives the time it will take a population to evolve154

to this safe trait value zNc , which we will call the ‘time at risk’ tr (Figure 2)155

tr =
σ2
k

µσ2
µK0R

ln
[ (z∗0 − z∗n)2
2σ2

kln
(
K
Nc
)

]
. (10)

INSERT FIGURE 2 HERE156

So the time at risk tr increases with the strength of the initial stress |z∗0 − z∗n|σ−1k and the ratio157

of critical abundance to maximum carrying capacity Nc/K and decreases with the mutational158

input µK0, mutational variance σ2
µ, and the strength of stabilizing selection per unit time R/σ2

k.159

Time at risk tr is a unimodal function of environmental tolerance σk, with longest times at160

intermediate tolerances (Figure 3). Time at risk is reduced at small and large environmental161

tolerances because small tolerances cause strong selection (and hence fast evolution) and large162

tolerances allow greater abundances for a given degree of maladaptation.163

INSERT FIGURE 3 HERE164

2.2 Comparison of one-population model to previous work165

Here we compare our one-population model to previous discrete-time quantitative genetic mod-166

els [3, 34]. We first show how our adaptive dynamics approach gives a qualitatively similar167

description of trait dynamics over time and then compare our predictions of time at risk.168

In a model without frequency- or density-dependence, Gomulkiewicz and Holt [3] describe169
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the evolutionary trajectory of the population mean trait value as a geometrical approach to the170

optimum (Equation 5 in [3]):171

dt = d0

[w + (1− h2)P
w + P

]t
(11)

where dt is the distance of the population mean trait value from the trait value giving maximum172

growth rate at time t, w is the variance of the growth rate function, h2 is the trait heritability, and173

P is the constant phenotypic variance [3]. We derive a qualitatively similar trajectory (Equation174

7), in continuous time, from adaptive dynamics. Adaptive dynamics provides greater ecological175

context by including intrinsic growth rate and maximum carrying capacity as parameters in the176

evolutionary trajectory. The trajectories are identical when177

w + (1− h2)P
w + P

= Exp
[−µσ2

µK0R

2σ2
k

]
. (12)

Gomulkiewicz and Holt [3] refer to Equation 12 as the evolutionary ‘inertia’ of a trait. Inertia178

is bounded between zero and one in both models. When inertia is one there is no evolution.179

In Gomulkiewicz and Holt [3] evolution halts when trait heritability h2 or phenotypic variance180

is zero. In our model, inertia is determined by mutational input µK0, and evolution halts181

when there are no mutations. For a given w and h2 6= 0, inertia is minimized and evolution182

proceeds at a maximum rate in Gomulkiewicz and Holt [3] as phenotypic variance goes to183

infinity P →∞. In our model, for a given strength of stabilizing selection per unit time R/σ2
k,184

inertia to approaches zero and the rate of evolution is maximized as mutational input goes to185

infinity µK0 →∞.186

Note that to maintain analytical tractability both models assume the material which selec-187

tion acts upon (phenotypic variance P or mutational input µK0) is constant. Both models will188

therefore be more accurate when the environmental change is relatively small. Large changes189

in the environment are likely to cause strong selection and large variation in abundance, which190

could greatly alter phenotypic variance and mutational input [30]. Since phenotypic variance191

and mutational input are expected to decline under strong stabilizing selection and reduced192

abundance [47], respectively, the analytical results of both models will tend to underestimate a193

population’s time at risk.194
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Our evolutionary trajectory aligns even closer with that of Chevin and Lande (Equation 10 in195

[34]; also see Equation 18a in [48]), who incorporated both density-dependence and phenotypic196

plasticity. The two trajectories are identical when there is constant plasticity ϕ = 0, additive197

genetic variance is equivalent to the supply rate of beneficial mutations times mutational size198

σ2
a = µσ2

µK0/2, and the two measures of stabilizing selection strength per unit time are the199

same γ∗ = R/σ2
k.200

Although our evolutionary trajectory aligns closely with those of Gomulkiewicz and Holt201

[3] and Chevin and Lande [34], we uncover an analytical approximation for the time at risk tr202

by assuming a timescale separation between demographics and evolution. Gomulkiewicz and203

Holt [3] and Chevin and Lande [34] do not assume such a timescale separation, leading to more204

complex population dynamics and the need to calculate tr numerically. This makes a quantita-205

tive comparison with our time at risk approximation impossible. However, Gomulkiewicz and206

Holt [3] agree that the time at risk tr should increase with initial maladaptation (i.e., magnitude207

of environmental change) |z∗0 − z∗n| and that at high degrees of maladaptation the relationship208

with time at risk should be close to linear (Figure 3; Figure 5A in [3]). In addition, in both209

Gomulkiewicz and Holt [3] and Chevin and Lande [34] strengthening selection 1/ω → ∞ in-210

creases the rate of adaptation while decreasing abundance (through a decline in mean fitness).211

Time at risk should therefore be minimized at an intermediate selection strength, as in our212

model (Figure 3, bottom panel), although they do not explore this explicitly. Gomulkiewicz213

and Holt [3] also argue that the time at risk tr should decrease with the abundance before envi-214

ronmental change, since the population declines geometrically beginning at this abundance. In215

our model, time at risk also decreases with abundance before environmental change K0, but for216

a different reason. Recall that because of our first-order approximation we assume a small ini-217

tial stress and hence a small change in abundance. This allows us to assume that mutations are218

supplied at a constant rate µK0, where µ is the per capita mutation rate andK0 is the abundance219

before environmental change. A greater abundance before environmental change K0 therefore220

causes faster evolution resulting in less time at risk. Finally, although221



Rescue and competition Osmond & de Mazancourt 10

2.3 Simulations222

Adaptive dynamics assumes mutations are rare enough such that, on the timescale of evolution,223

the population remains monomorphic (i.e., a mutation fixes or is lost before the next arises [49])224

and at demographic equilibrium (i.e., demography is faster than evolution) and that mutations225

are small enough to allow local stability analyses to determine evolutionary stability [40, 45].226

Our approximation of time at risk tr (Equation 10) also rests on the assumption that the initial227

stress |z∗0 − z∗n|σ−1k is weak. We therefore performed computer simulations to examine how228

well our analytical result (time at risk tr) holds when we relax these assumptions. To do this229

we varied (a) mutation rate µ and maximum carrying capacity K, (b) mutational variance σ2
µ,230

and (c) the strength of the initial stress |z∗0 − z∗n|σ−1k . Computer simulations allow multiple231

phenotypes to coexist and introduces stochasticity in mutation rate and size.232

Simulations describe the numerical integration of Equation 1, using a 4th-order Runge Kutta233

algorithm with adaptive step size, and stochastic mutations. Mutations occur in a phenotype234

with probability µn4t, where µ is the per capita per time mutation rate, n is the abundance of235

the phenotype, and 4t is the realized time step. For each mutation occuring in a phenotype236

with trait value z, one individual is given a new trait value, randomly chosen from a normal dis-237

tribution with mean z and standard deviation σµ. Trait values are rounded to the third decimal238

to prevent the accumulation of overly similar phenotypes. Phenotypes with abundance below239

one were declared extinct. Simulations began with the population at maximum carrying capac-240

ity K and all individuals optimally adapted with trait value z = z∗0 . At the timestep 500, the241

optimal trait value instantaneously shifted to z∗n 6= z∗0 . Simulations were terminated at timestep242

50000. Code available upon request; implemented in R [50].243

Parameter values for µ, K, and |z∗0 − z∗n|σ−1k were chosen in the range of those observed for244

yeast exposed to increased salt concentration [5]. We estimated σk from Figure S1 in Bell and245

Gonzalez [5] (ESM).246

In all simulations, the population evolved towards z∗n, and, if successful in reaching z∗n,247

remained there. Likewise, population size always approached carrying capacity, as expected248

(Figure 2).249

The transient dynamics, however, showed varying degrees of congruence with our predic-250
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tion (Equations 7 and 8; Figure 4). In simulations the amount of standing phenotypic variance251

increases with mutation rate µ times population size. Our timescale assumption, which im-252

plies zero phenotypic variance, is thought to become unrealistic as µKlog(K) approaches one253

[51]. The threshold of µKlog(K) is obtained because µK is the mutational input and log(K)254

is the typical time of fixation for a successful mutant when the population is well adapted255

[51]. Over our parameter range (µ={10−7, 10−6, 10−5, 10−4}, K={104, 105, 106}) µKlog(K)256

seemed to be an excellent predictor of accuracy; our predictions were much more accurate when257

µKlog(K) < 1. When µKlog(K) > 1 we greatly underestimated the time at risk (triangles in258

Figure 4).259

Mutational variance σ2
µ seemed to have little effect on the accuracy of our predictions, at260

least over the range of parameter space explored here (σµ={0.01, 0.05}; Figure 4). However,261

our analytical prediction did perform consistently better when the initial stress |z∗0 − z∗n|σ−1k262

was small, for all parameter combinations (compare black |z∗0 − z∗n|σ−1k =1.2 and gray |z∗0 −263

z∗n|σ−1k =2.1 points in Figure 4).264

INSERT FIGURE 4 HERE265

2.4 Competition266

We now introduce interspecific competition. Let the population dynamics of the focal popula-267

tion be described by the logistic growth equation:268

dni
dt

= niR
(
1−

∫
α(zi, zj)njdzj + C(zi, t)

k(zi, z∗)

)
, (13)

where C(zi, t) ≥ 0 is the effect of interspecific competition on individuals in the focal popula-269

tion with trait value zi at time t. We do not model the coevolution of the competitors explicitly;270

we instead keep interspecific competition C(zi, t) as general as possible, allowing it to depend271

on focal trait value zi and vary in time t with any other biotic or abiotic factor (including the272

trait values and abundance of the focal and competing populations). For evolutionary rescue273

of the focal population, the only relevant dependency is with zi. Our formulation allows com-274

petition C to encompass all possible types of coevolution feedback. In fact, C could even be275

interpreted as an abiotic selection pressure. However, for brevity, we limit our discussion to276
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C as the effect of a competitor. Previous studies have explicitly modeled the coevolution of277

competing species in a constant environment [37, 52, 53], at the expense of analytical results.278

All other variables in Equation 13 are defined as in the one-population case.279

We again assume that mutations are rare, so that our focal population remains monomorphic280

with trait value ẑ and equilibrial abundance ñ. In the presence of competition, equilibrium281

abundance of the focal population is282

ñ(ẑ, z∗, t) = k(ẑ, z∗)− C(ẑ, t). (14)

Comparison with the one-population case, where ñ = k, shows how competition reduces abun-283

dance.284

Now, let the competing populations coexist in a constant environment with z∗ = z∗0 . The285

population will not necessarily evolve towards z∗0 but to a ‘competitive optimal’ z∗c,0, which286

is the trait value which maximizes equilibrial abundance ñ in the original environment (Ap-287

pendix C). Assuming z∗c,0 is a fitness maximum (Appendix C), the focal population will even-288

tually evolve to the competitive optimal ẑ = z∗c,0. We then let the competitive optimal change289

abruptly, to new trait value z∗c,n 6= z∗c,0. This change could arise from a shift in competi-290

tion C or in the optimal trait value z∗ = z∗n. The abundance of the focal population is now291

k(z∗c,0, z
∗
n) − C(z∗c,0, t). The amount of competition a population feels immediately following292

the environmental change C(z∗c,0, t) will depend on the type of environmental change as well293

as the response of the competitors. Competition may be close to negligible if resources remain294

plentiful but the abundance of competitors are greatly reduced (e.g., when a pollutant causes295

severe mortality in the competitor). However, competition may be exceptionally strong if the296

change in environment is a shift in available resources, so that the supply of resources is limit-297

ing (e.g., seed size changes on an island supporting multiple species of finch [54]). Persistence298

requires k(z∗c,0, z
∗
n)−C(z∗c,0, t) ≥ 1, and therefore persistence following environmental change299

is more likely when competition C(z∗c,0, t) is weak.300

In Appendix C we derive the local fitness gradient of the focal population. In the new301

environment, with z∗ = z∗n, it can be written as302
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g(ẑ, z∗n, t) =
∂

∂zm

( 1

nm

dnm
dt

)∣∣
zm=ẑ

= R
[ ∂
dẑ

(
k(ẑ, z∗n)− C(ẑ, t)

)
k(ẑ, z∗n)

]
. (15)

The population evolves larger population size k − C until ∂
∂ẑ
(k − C) = 0, which occurs when303

the population reaches the competitive optimal in the new environment ẑ = z∗c,n (Figure 5).304

We assume that z∗c,n is a fitness maximum, such that the population remains monomorphic305

(Appendix C).306

From Equation 15 we see that, relative to the one-population case (Equation 5), competition307

can alter the strength and direction of selection, depending on how competition changes with308

trait value (Figure 5). Competition increases the strength of selection when | ∂
∂ẑ
(k−C)| > | ∂

∂ẑ
k|.309

This is will always occur when competition selects in the same direction as carrying capacity310

(i.e., ∂k
∂ẑ

and ∂C
∂ẑ

are of different signs). Competition decreases selection when | ∂
∂ẑ
(k − C)| <311

| ∂
∂ẑ
k|, which will occur when competition weakly selects in the opposite direction to carrying312

capacity (i.e., ∂k
∂ẑ

and ∂C
∂ẑ

are of the same sign and |∂C
∂ẑ
| is small). When competition selects in313

the opposite direction as carrying capacity and has a stronger selective effect |∂C
∂ẑ
| > |∂k

∂ẑ
|, it will314

reverse the direction of selection and the population will evolve away from z∗n. Competition315

has no effect on selection when it is independent of trait value ∂C
∂ẑ

= 0.316

INCLUDE FIGURE 5 HERE317

Combining Equations 14 and 15 we compute the rate of adaptation, as described by the318

canonical equation [44]:319

dẑ

dt
=
−µσ2

µ

2

[
k(ẑ, z∗n)− C(ẑ, t)

]
R
[ ∂
dẑ

(
k(ẑ, z∗n)− C(ẑ, t)

)
k(ẑ, z∗n)

]
. (16)

The rate the focal population adapts dẑ
dt

depends on how competition affects abundance relative320

to selection. Due to the added complexity of competition we are unable to solve Equation 16321

for trait value as a function of time ẑ(t) and are therefore unable to compute a time at risk322

tr, as we did in the one-population case. However, we can show when competition will help323

or hinder adaptation, and therefore when competition has the potential to increase or decrease324

the likelihood of evolutionary rescue. Rearranging Equation 16 and comparing to the one-325

population case (Equation 6) shows that competition will increase the rate of adaptation when326
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(Appendix D)327

∣∣∣ ∂
∂ẑ

(
k(ẑ, z∗n)− C(ẑ, t)

)∣∣∣ > k(ẑ, z∗n)

k(ẑ, z∗n)− C(ẑ, t)

∣∣∣∂k(ẑ, z∗n)
∂ẑ

∣∣∣, (17)

and decrease the rate of adaptation when the inequality is reversed. Competition will tend328

to speed adaptation when competition C is weak and gets much weaker as the focal popula-329

tion evolves towards z∗c,n (dot-dashed curve in Figure 6). Note that although competition may330

increase the rate of adaptation, and therefore cause a greater rate of increase in abundance,331

abundance will still be depressed by competition. Competition’s effect on evolutionary rescue332

(the time at risk tr) will therefore depend on both its effect on adaptation and the abundance333

k − C relative to critical abundance Nc (bottom panel in Figure 6). As maximal abundance334

K−C approaches the critical value Nc evolutionary rescue becomes less likely, and regardless335

of the rate of adaptation, when K − C ≤ Nc evolutionary rescue is impossible.336

INCLUDE FIGURE 6 HERE337

3 Discussion338

In nature, population abundance cannot increase indefinitely [55]. One of the main ‘checks of339

increase’ [56] is competition for resources [17, 57, 19, 58, 59]. Because populations with lower340

abundances are more likely to go extinct [46], any factor which limits abundance is likely to341

hinder persistence, especially when the environment changes [22]. However, when we consider342

that populations can persist in new environments by adapting [3, 5], competition has a second343

effect, in addition to lowering population size, which could potentially help populations persist344

in novel environments. Since the rate a population adapts depends on the strength of selection345

it experiences [60, 44], competition which increases the strength of selection may speed-up346

adaptation [61] possibly increasing the chances of persistence in the face of change.347

Intraspecific competition often has relatively little impact on selective pressures [58, 62]348

(but see [63]) and therefore the effect it has on evolutionary rescue will often be determined349

primarily by the effect it has on abundance. Previous computer simulations have suggested that350

negative density-dependence will have little effect on population persistence because survival351

depends on the dynamics of populations which are well below carrying capacity [29]. More352
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recent analytical work has come to a different conclusion, showing that, relative to the density-353

independent case, density-dependence can increase the rate at which abundance declines as354

well as decrease the rate abundance recovers, therefore increasing the time a population spends355

at risk of extinction [34]. The conflicting results are due to the different types of density-356

dependence used in the two studies. In Boulding and Hay [29] density-dependence is linear357

(i.e., per capita growth rate declines linearly with abundance) while in Chevin and Lande [34]358

density-dependence is stronger than linear at low abundances (the per capita growth rate de-359

clines logarithmically with abundance). Since it is the effect of density-dependence at low360

abundances that is critical for population persistence, this explains why Chevin and Lande [34]361

claim density-dependence increases the chances of extinction. A similar trend is expected in362

biological invasions, where populations experiencing strong density-dependence at low abun-363

dances are predicted to invade slowly [64].364

Here we assume evolution is slow, and hence, on the timescale of evolution, populations365

are always at carrying capacity. Carrying capacity therefore indicates how well a population366

is adapted; populations below carrying capacity will increase in abundance without evolving,367

and hence may not require evolutionary rescue if their carrying capacity is large enough. In our368

model, it is the maximum carrying capacity that affects the potential, and need, for evolutionary369

rescue. Since abundance asymptotically approaches maximum carrying capacity in evolution-370

ary time (Figure 2), maximum carrying capacity will have a larger effect on the time at risk as371

it approaches the critical abundance (Figure 3).372

Notice that maximum carrying capacity plays both a demographic and evolutionary role;373

for a given environmental change, larger values keep populations at larger abundances (K in374

Equation 8) and, following the change, increase the rate of evolution (K0 in Equation 7). Here375

we assume greater abundances lead to faster evolution because they cause greater mutational376

inputs. In previous models (e.g., [3, 34]), where the rate of evolution is determined by additive377

genetic variation instead of mutational input, the relationship between population size and the378

rate of evolution can be weaker (reviewed in [65]). Although non-additive genetic effects, such379

as epistasis and dominance, and temporal fluctuations in abundance (leading to lower effective380

population sizes) can weaken the relationship between population size and the rate of evolution381

[66], they do not qualitatively alter our results, but merely lead to a slower rate of evolution382
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than predicted.383

Given the differences between quantitative genetics and adaptive dynamics [51], our results384

are surprisingly consistent with previous quantitative genetic models of evolutionary rescue385

(e.g., [3, 34]). We derive a similar evolutionary trajectory and agree with Gomulkiewicz and386

Holt [3] on with how time at risk should increase with initial maladaptation and decrease with387

abundance before environmental change.388

There is, however, one major difference between our approach and previous models of389

evolutionary rescue. All previous models assume the environmental change affects intrinsic390

growth rate, and that it is the intrinsic growth rate that must evolve fast enough to allow persis-391

tence. In our model, intrinsic growth rate R has no effect on abundance since populations are392

assumed to remain at demographic equilibrium, which is independent of R. In particular, the393

environmental change might affect R with no effect on abundance (so long as R > 0). Intrinsic394

growth rate is therefore irrelevant for evolutionary rescue in our model. Here rescue depends395

on the effect of the environmental change on carrying capacity k, and the evolution of k. Past396

models describe evolutionary rescue under r-selection while we describe evolutionary rescue397

under K-selection [67, 68]. Hence, our model is more applicable to situations where density-398

dependence remains strong following the environmental change, during subsequent adaptation.399

Density-dependence will remain strong when the demand for resources continues to equals400

the supply. Obviously, density-dependence will remain strong when an environmental change401

acts only to reduce the supply of resources. This describes how a population of Darwin’s402

finches has responded to drought [54]. The drought lowered the supply of seeds the finches ate,403

causing a rapid decline in finch abundance. Competition for small seeds intensified following404

drought and the finch population remained at carrying capacity, a carrying capacity which had405

been reduced by decreased food supply. Density-dependence can also be maintained when an406

environmental change leaves the supply of resources unaffected but increases the per capita407

demands. For instance, if stress tolerance requires increased energetic demands, a population408

exposed to a stress may continue to experience strong density-dependence despite a decline in409

abundance and unaffected resources. This may describe the situation observed in recent experi-410

ments of evolutionary rescue in yeast populations exposed to salt, where glucose concentration411

was unaffected [5, 38].412
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Simulations indicate that our analytical approximations are sensitive to mutational input413

and the fixation times of new beneficial mutations. When mutations are too frequent or fixation414

times are too long we consistently underestimate the time at risk (Figure 4). The underestimate415

likely arises from the adaptive dynamic assumption that fixation occurs instantaneously and the416

population remains monomorphic. In simulations which permit greater polymorphism, less fit417

phenotypes compete with those closer to the adaptive optimum, imposing a demographic load418

on the population. The continued existence of less fit phenotypes slows the increase of carrying419

capacity, causing populations to remain at risk of extinction for longer than expected. This is420

similar to what, in microbial evolution, is refered to as ‘clonal interference’ [69]. However,421

many populations should conform to our low mutation input assumption. For instance, the422

mutations rate of Saccharomyces cerevisiae salt tolerance is approximately µ = 10−7 muta-423

tions per genome per generation [5]. Since our analytical approximations are accurate when424

µKlog(K) < 1, our method can handle yeast populations of about one million cells or less.425

Although our approximations are most sensitive to high mutational inputs and slow fixa-426

tion times, our assumption that mutational input is constant throughout adaptation (similar to427

assuming constant phenotypic variance [48, 3]) becomes less realistic as the initial stress be-428

comes larger (Figure 4). Assuming constant mutational input is necessary for an analytical429

solution, but causes us to consistently underestimate the time at risk. In reality, environmental430

changes will cause reductions in abundance which will decrease the supply rate of new mu-431

tations (or phenotypic variance [48]), effectively ‘pulling the rug out from under evolutionary432

rescue’ [30]. Both ours and the traditional quantitative genetic [48] analytical approximations433

are less accurate under strong selection [29]. Because high mutation rates, long fixation times,434

and large initial stresses all cause our approximation to underestimate the time at risk, our435

analytical results can be considered a best-case scenario for population persistence.436

Competition between individuals of distinct species is likely to cause dramatic changes in437

selective pressures [70, 62]. If competition is strong enough to drive rapid adaptation, competi-438

tors can potentially help a population adapt and persist following an environmental change. In a439

continuously changing environment, computer simulations of two competing populations have440

shown that competition can aid the persistence of the better adapted population by increasing441

selective pressure, effectively “pushing” the phenotype of the better adapted population toward442
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the moving optimal [36]. Our results clarify this point - competition can aid population persis-443

tence when it increases the selective pressure to evolve to the new environment - and give an444

additional requirement: competition must increase selection pressure enough to overcome the445

negative effect of reduced abundance. The effect of competition on evolutionary rescue can be446

explained in terms of the overlap between the competitor’s niche and the niche the focal popu-447

lation is attempting to adapt to. When the focal population is forced to adapt to a niche already448

occupied by a competitor (strong niche overlap), competition will hinder adaptation because449

competition selects in the opposite direction as the new environment (dashed curve in Figure450

6). On the other hand, when the competitor has a niche which only partially overlaps the niche451

the focal population is attempting to adapt to, it can speed adaptation by depressing the fitness452

of individuals in the focal population which are farther from the new niche (dot-dashed curve453

in Figure 6). We can illustrate this concept by returning to the example of Darwin’s finches.454

Drought reduced the supply of small seeds, shifting the niche available to the medium ground455

finch (Geospiza fortis) to larger seeds. In general, this caused fortis populations to evolve to456

larger size [54]. However, in the presence of the large ground finch G. magnirostris, who eat457

large seeds (strong niche overlap), larger fortis were outcompeted by magnirostris, preventing458

fortis from evolving to larger size [71, 72]. Meanwhile, in the presence of the small ground459

finch G. fuliginosa, who eat small seeds (partial niche overlap), smaller fortis were outcom-460

peted by fuliginosa, causing fortis to evolve to a larger size faster than they did in the absence461

of competitors [61]. Populations of fortis approached the new adaptive peak faster when in462

competition with fuliginosa because fuliginosa increased selection pressure towards the peak.463

What remains to be seen, and what is pivotal for evolutionary rescue, is whether the increased464

adaptation of fortis in the presence of fuliginosa overcame the reduction in fortis abundance465

caused by competition with fuliginosa.466

On the other hand, competition may be the very reason evolutionary rescue is required for467

persistence in the first place. Invasive species, for example, can greatly reduce the abundance of468

pre-existing competitors, putting many populations at risk of extinction (reviewed in [14]). Our469

results suggest that some invading populations, which are themselves the cause of extinction470

risk, hinder evolutionary rescue in their competitors, while other invaders may permit rapid471

adaptation. The model presented here may therefore help predict if an invasive species is likely472
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to cause niche displacement or extinction (reviewed in [13]). Since few examples of extinction473

are associated with competitive interactions between native and invasive species [13], invading474

competitors may often allow rapid adaptation.475

Although we have shown that competition can help evolutionary rescue under specific cir-476

cumstances, we have simultaneously shown that in other circumstances competition will surely477

hinder persistence. Interspecific competition is also expected to reduce rates of adaptation in478

the context of species’ range limits [72] and gradual environmental changes in metacommu-479

nities [73]. When competition hinders adaptation, we expect evolutionary rescue to be more480

common in communities with reduced niche overlap, [74] or greater character displacement481

[75], since in these communities there should be less interspecific competition.482

Coevolution can alter the demographic costs and selection pressures imposed by compe-483

tition, therefore impacting population persistence [70]. In our case, altering the strength and484

selection pressure of competition means a shift in the height and slope of the competition curve485

(Figure 5), respectively, as the focal population evolves. A number of previous studies have486

investigated the effect of coevolution between competitors (although not in the context of evo-487

lutionary rescue; [37, 52, 53]). Here, instead of asking how a specific form of coevolution488

influences persistence, we ask a more general question: what types of coevolution help (or489

hinder) evolutionary rescue? For example, if coevolution is expected to cause strong character490

displacement [53], not only will the less adapted population “push” the better adapted popula-491

tion to even greater levels of adaptation, but the better adapted population will also “push” the492

less adapted population away from it, reducing the positive effect of competition on evolution-493

ary rescue.494

Although our analytical approach sometimes requires stricter assumptions than simulation495

studies (e.g., constant mutational input), it avoids the finite choice of parameter values de-496

manded in simulation studies, and thereby provides more general results. For instance, our497

expression for time at risk (Equation 10) shows a unimodal relationship with environmental498

tolerance (Figure 5), indicating that extinction is most likely at intermediate tolerances. Ex-499

tinction is most probable at intermediate environmental tolerances because small tolerances500

cause strong selection pressures and hence - if the population can survive the initial stress - fast501

evolution, while large tolerances allow high degrees of maladaptation without a demographic502
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cost. To our knowledge, this is the first time this relationship has been clearly demonstrated.503

In a recent experiment of adaptation to a novel environment under competition, Collins [9]504

subjected pairs of competing photosynthetic microbe strains to increased carbon dioxide levels.505

Despite the loss of one of the competing strains part way through the experiment, the presence506

of a competitor at the beginning of the experiment always reduced the final abundance of the507

survivor. Collins [9] partitioned the effects of physiology, evolution to increased carbon dioxide508

levels, and competitive ability on final abundance. She found that when competition had an509

effect it was always opposing evolution to carbon dioxide. In other words, when competition510

affected adaptation it was because the superior competitor went extinct while the strain most511

capable of adapting to the new environment evolved slower than it would have in monoculture.512

A trade-off between competitive ability and the ability to adapt to abiotic change lowered the513

abundance of both strains, impeding evolutionary rescue of all. In our model, this amounts514

to a positive correlation between carrying capacity and competition during the initial stages515

of adaptation. When this positive correlation exists, competition will nearly always impede516

evolutionary rescue.517

To our knowledge, this is the first analytical work to investigate the effect of interspecific518

competition on evolutionary rescue following an abrupt environmental change. In doing so,519

we have highlighted the general ecological and evolutionary settings where competition should520

help or hinder persistence to environmental change.521
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5 Appendix A529

Here we find the singular strategy in the one-population case and evaluate its stability. Detailed530

methods can be found in Geritz et al. [40]. From Equation 1 the local fitness gradient is531

∂

∂zm

( 1

nm

dnm
dt

)∣∣∣
zm=ẑ

=
[
−R ∂

∂zm

α(zm, ẑ)nr
k(zm, z∗)

]
zm=ẑ

, (A1)

where zm is the trait value of a rare mutant with abundance nm and ẑ is the trait value of the532

resident with abundance nr. Dropping the arguments of the functions and denoting ∂
∂zm

with533

prime gives534

∂

∂zm

( 1

nm

dnm
dt

)∣∣∣
zm=ẑ

=
[
−R

(
nr
α′k − αk′

k2

)]
zm=ẑ

. (A2)

Assuming d
dz
α(z, z) = 0 and α(z, z) = 1, evaluating at zm = ẑ gives535

∂

∂zm

( 1

nm

dnm
dt

)∣∣
zm=ẑ

= Rnr
k′

k2
. (A3)

Specifying k as a Gaussian function (Equation 2) with mean z∗ and variance σ2
k,536

∂

∂zm

( 1

nm

dnm
dt

)∣∣
zm=ẑ

= R
(ẑ − z∗)
σ2
k

e−(ẑ−z
∗)2/2σ2

k . (A4)

The local fitness gradient is zero when ẑ = z∗ (i.e., z∗ is the singular strategy). If z∗ maximizes537

the local fitness gradient it is a fitness maximum and therefore evolutionary stable (ESS). If538

z∗ minimizes the local fitness gradient it is a fitness minima and evolutionary branching may539

occur [40]. The singular strategy is a fitness maximum when540

∂2

∂z2m

( 1

nm

dnm
dt

)∣∣
zm=ẑ=z∗

< 0 (A5)

or, equivalently541

[
−Rnr

∂

∂zm

(α′k − αk′
k2

)]
zm=ẑ=z∗

< 0. (A6)

Evaluating at zm = ẑ = z∗ gives542
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−R(α′′ − k′′/K) < 0, (A7)

and z∗ is therefore evolutionary stable when543

α′′ > k′′/K. (A8)

Specifying k as Equation 2, z∗ is evolutionary stable when544

α′′ > −1/σ2
k. (A9)

The population will converge on the singular strategy z∗ only if545

[ ∂2
∂z2m

( 1

nm

dnm
dt

)]
zm=ẑ=z∗

<
[ ∂2
∂ẑ2

( 1

nm

dnm
dt

)]
zm=ẑ=z∗

(A10)

−R(α′′ − k′′/K) < 0, (A11)

and so, if the singular point is evolutionary stable it is also convergence stable. Throughout the546

paper we assume Equation A11 holds to simplify our analysis of evolutionary rescue.547

6 Appendix B548

Here we derive approximations for the ecological and evolutionary dynamics in the one-population549

case (Equations 7 and 8). We first move all terms of Equation 6 with ẑ to the left-hand side and550

bring dt to the right. Then taking the integral,551

∫
e(ẑ−z

∗
n)

2/2σ2
k

(ẑ − z∗n)
dẑ =

∫ −µσ2
µKR

2σ2
k

dt. (B1)

Since there is no analytical solution for the indefinite integral on the left hand side, we use the552

Taylor expansion about x = 0, ex
2/a

x
=
∑

x2n−1

n!an
, with x = ẑ − z∗n and a = 2σ2

k. Taking the553

Taylor series about ẑ − z∗n = 0 leads us to assume a small change in abundance and hence554

constant mutational input µK. We therefore replace K with K0 to indicate that mutational555
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input depends on the original abundance. We now have556

∫ ∞∑
n=0

(ẑ − z∗n)2n−1

n!(2σ2
k)
n

dẑ =
−µσ2

µK0R

2σ2
k

t (B2)

∫ ( 1

ẑ − z∗n
+
ẑ − z∗n
2σ2

k

+
(ẑ − z∗n)3

8σ4
k

+ ...
)
dẑ =

−µσ2
µK0R

2σ2
k

t (B3)

ln(ẑ − z∗n) +
(ẑ − z∗n)2

4σ2
k

+ ...+ C =
−µσ2

µK0R

2σ2
k

t. (B4)

Approximating to the first order557

ln(ẑ − z∗n) + C ≈
−µσ2

µK0R

2σ2
k

t, (B5)

and solving for ẑ gives558

ẑ ≈ z∗n + e
−µσ2µK0R

2σ2
k

t−C
. (B6)

At t = 0 we have ẑ = z∗0 , so C = −ln(z∗0 − z∗n) and we get Equation 7:559

ẑ(t) ≈ z∗n + (z∗0 − z∗n)e
−µσ2µK0R

2σ2
k

t
. (B7)

Subbing Equation B7 into Equation 2 gives an approximate description of population abun-560

dance across evolutionary time (Equation 8).561

7 Appendix C562

Here we find the singular strategies for a population experiencing interspecific competition and563

evaluate their stability. From Equation 13 the local fitness gradient is564

∂

∂zm

( 1

nm

dnm
dt

)∣∣∣
zm=ẑ

=
[
−R ∂

∂zm

(α(zm, ẑ)nr + C(zm, t)

k(zm, z∗)

)]
zm=ẑ

. (C1)

where zm and nm are the trait value and abundance of a rare mutant, respectively, in a popula-565

tion with resident trait value ẑ and abundance nr. We drop the arguments of the functions and566
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denote ∂
∂zm

with prime. Expanding gives567

∂

∂zm

( 1

nm

dnm
dt

)∣∣∣
zm=ẑ

= −R
[
nr
α′k − αk′

k2
+
C ′k − Ck′

k2

]
zm=ẑ

. (C2)

And from Equation 14:568

∂

∂zm

( 1

nm

dnm
dt

)∣∣∣
zm=ẑ

= −R
[
(k − C)α

′k − αk′

k2
+
C ′k − Ck′

k2

]
zm=ẑ

. (C3)

Evaluating at zm = ẑ:569

∂

∂zm

( 1

nm

dnm
dt

)∣∣
zm=ẑ

= R
[α′k2 − αkk′ − α′Ck + αCk′ + C ′k − Ck′

k2

]
. (C4)

Assuming intraspecific competition α is maximal when individuals share the same trait value,570

∂
∂zi
α(zi, zi) = 0, and α(zi, zi) = 1:571

g(ẑ, z∗) =
∂

∂zm

( 1

nm

dnm
dt

)∣∣
zm=ẑ

= −R
[k′ − C ′

k

]
. (C5)

Equation C5 determines the direction of selection. Evolution proceeds until g(ẑ, z∗) = 0,572

in this case when k′ = C ′. The trait values giving g(ẑ, z∗) = 0 are evolutionary singular573

strategies, which we will denote z∗c . If z∗c maximizes g(ẑ, z∗), z∗c is a fitness maximum; when574

ẑ = z∗c no nearby mutant can invade and the population remains monomorphic with ẑ = z∗c .575

However, when z∗c minimizes g(ẑ, z∗), z∗c is a fitness minima and evolutionary branching may576

occur [40]. A singular point z∗c is a fitness maximum when577

∂2

∂z2m

( 1

nm

dnm
dt

)∣∣
zm=ẑ=z∗c

= −R
[α′′(k2 − Ck) + k(C ′′ − k′′) + (k′)2(k3 − Ck2 − 1)

k2

]
< 0.

(C6)

To simplify our analysis of evolutionary rescue we assume that all singular strategies our pop-578

ulation approaches are fitness maxima. This assumes, at zm = ẑ = z∗c ,579

α′′(k2 − Ck) + k(C ′′ − k′′) + (k′)2(k3 − Ck2 − 1) > 0. (C7)

We will also assume the singular strategies are convergence stable, requiring:580
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[ ∂2
∂z2m

( 1

nm

dnm
dt

)]
zm=ẑ=z∗c

<
[ ∂2
∂ẑ2

( 1

nm

dnm
dt

)]
zm=ẑ=z∗c

. (C8)

8 Appendix D581

Beginning with Equation 16, we look to find when interspecific competition speeds adaptation582

towards the optimal z∗ = z∗n. Dropping the arguments of the functions and denoting ∂
dẑ

with583

prime, Equation 16 reads584

dẑ

dt
=
−µσ2

µ

2

[
k − C

]
R
[k′ − C ′

k

]
(D1)

dẑ

dt
=
−µσ2

µR

2

[(k − C)(k′ − C ′)
k

]
. (D2)

Since in the one-population case dẑ
dt

=
−µσ2

µR

2
k′ (Equation 6), competition will speed evolution585

when586

∣∣∣(k − C)(k′ − C ′)
k

∣∣∣ > |k′|. (D3)

Since k and k − C must be positive for the population to persist,587

|k′ − C ′| > k

k − C
|k′|, (D4)

yielding Equation 17.588
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9 Figure captions749

Figure 1: Our initially adapted population is monomorphic for the optimal phenotype in the750

original environment ẑ=z∗0 (gray). When the environment changes, the carrying capacity func-751

tion shifts (black). The new carrying capacity of our population Kn = k(z∗0 , z
∗
n) is the height of752

the intersection of the original trait value z∗0 and the new carrying capacity function. The pop-753

ulation evolves towards the new optimal phenotype z∗n. The population is at risk of extinction754

while its abundance is less than Nc, or equivalently, while ẑ<zNc .755

Figure 2: Adaptation following an abrupt change in the environment. (Top) Population trait756

value ẑ evolves towards the new optimal z∗n (Equation 7). The time it takes to evolve a trait757

value zNc , which gives a critical abundance Nc, is the expected ‘time at risk’ tr (Equation 10).758

(Bottom) Population abundance ñ increases as the population adapts to the new environment759

(Equation 8). Solid lines are analytical predictions (Equations 7 and 8). Greyscale is trait value760

weighted by abundance in a computer simulation, with dark common and white rare. The thick761

dashed line is total abundance at each time step in simulation. The observed time at risk is762

denoted trobs .763

Figure 3: (Top) Time at risk tr (Equation 10) increases monotonically with the magnitude of764

environmental change |z∗0-z∗n|. Magnitudes of change smaller than 4z∗∗ are not large enough765

to put the population at risk of extinction (Equation 9) and magnitudes of change larger than766

4z∗ cause immediate extinction (Equation 3). (Middle) Time at risk tr increases as the critical767

abundance Nc approaches maximum abundance K. As the critical abundance approaches the768

maximum abundance, Nc/K → 1, the ratio has a stronger effect on the time at risk. (Bottom)769

Time at risk tr is a unimodal function of ‘environmental tolerance’ σk, where extinction is most770

likely at intermediate values. We must have σk>σ∗k for the population to survive the initial771

change in the environment and σk<σ∗∗k for the population abundance to drop below Nc (σ∗k and772

σ∗∗k are derived by rearranging Equations 3 and 9, respectively).773

Figure 4: Accuracy of analytical prediction, in the one-population case. Each point repre-774

sents the mean ± SE for ten replicated simulation runs. Solid line is 1:1 line; points falling775

on line represent perfect predictions of time at risk tr. Squares: µKlog(K) ≤0.1; Circles:776

µKlog(K) ≤1; Triangles: µKlog(K) >1; Black: |z∗0−z∗n|σ−1k =1.2; Grey: |z∗0−z∗n|σ−1k =2.1.777
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Parameters: µ={10−7, 10−6, 10−5, 10−4}, K={104, 105, 106}, σµ={0.01, 0.05}, R=1, σk=1,778

σα=1.5, and Nc is 1000 greater than the minimum abundance of each run.779

Figure 5: Selection pressures from carrying capacity and competition. The population evolves780

to increase population size according to Equation 15. Population size is carrying capacity minus781

competition k − C (solid curve minus dashed curve). Populations can persist in communities782

only when they have positive population size (region of persistence; solid line higher than the783

dashed line). The selection pressure in the new environment is proportional to the selection for784

carrying capacity (slope of solid curve) minus the selection for competition (slope of dashed785

curve). The population will therefore evolve towards the trait value for which the slopes of the786

two curves are equal ẑ → z∗c,n. The effective selection pressure will depend on the shape of the787

two curves and the position of the population in trait space. (A) Competition increases selection788

pressure. Competition decreases as carrying capacity increases, meaning both carrying capac-789

ity and competition select in the same direction. (B) Competition reduces selection pressure.790

Competition increases as carrying capacity increases, meaning carrying capacity and compe-791

tition exert opposing selection pressures. Note that if the competition curve was steeper than792

carrying capacity competition could reverse the direction of evolution. (C) Competition affects793

all phenotypes equally, and therefore has no effect on selection pressure. (D) Competition in-794

creases or decreases selection pressure. When ẑ < z∗c,n competition and carrying capacity exert795

opposing selection pressures. When ẑ > z∗n competition and carrying capacity select in the796

same direction, towards z∗c,n, until ẑ = z∗n. Competition and carrying capacity will then exert797

opposing selection pressures as the population approaches z∗c,n.798

Figure 6: Competition can help or hinder evolutionary rescue. (Top) Carrying capacity k (solid799

curve) as a function of trait value ẑ and two competition C scenarios: complete niche overlap800

(dashed curve) or partial niche overlap (dot-dashed curve). (Middle) With complete niche over-801

lap (dashed curve) competition increases as the population adapts, and the population therefore802

adapts slower than it would without competition (solid curve). With partial niche overlap (dot-803

dashed curve) competition decreases as the population adapts, and the population therefore804

adapts faster. (Bottom) The time a population spends at risk of extinction (the time abundance805

ñ is below critical abundance Nc) depends on competition’s effect on abundance and evolution806
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as well as on the value of the critical abundance. For instance, when the critical abundance807

is low Nc,low both competition scenarios increase the time at risk relative to when there is no808

competition (solid curve) because they depress the focal population’s abundance. However,809

when the critical abundance is high Nc,high partial niche overlap (dot-dashed curve) decreases810

the time at risk relative to the no competition case (solid curve) because it sufficiently increases811

the rate of adaptation.812
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