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In recent years, calls have been made to revise the Modern Evolutionary Synthesis (MS) 

to include insights about the contributions of developmental selection, niche construction 

and nongenetic transgenerational inheritance to the process of evolution (Jablonka 2017). 

The MS view in its typical interpretation describes evolution as the change in heritable 

genotypic frequency within and between populations as caused by the processes of natural 

selection, genetic drift and population division (Ashe et al. 2021). This definition of 

evolution excludes important transgenerational heritable characteristics and the 

mechanisms that impact them, such as parental effects, environmental modification, and 

epigenetic change. However, there is growing evidence that epigenetic markers exist that 

are both transgenerationally inheritable and induce meaningful change in an organism’s 

characteristics (Ashe et al. 2021, Jablonka and Raz 2009). This suggests that mechanisms of 

transgenerational epigenetic inheritance should be included in a comprehensive definition 

of evolution. This aligns with previous critiques of the MS that have suggested broader 

definitions of evolution, such as the “changes in the nature and frequency of heritable types 

in a population” as suggested by Jablonka and Lamb (2007).  



Considering this broader definition, it becomes important to understand the nature of 

the impact transgenerational epigenetics has on evolution. This question is complicated 

due to three axes of investigation: there are a variety of epigenetic mechanisms, a variety of 

ways in which transgenerational epigenetic inheritance can impact evolution and a variety 

of methodologies to explore the question. In this paper I focus on one of these 

methodologies, deriving insight from population genetic modelling techniques. 

Experimental or observational studies are limited by the resource demands of long-term 

analysis and isolating and measuring epigenetic change (Jablonka and Raz 2009). 

Modelling approaches can sidestep these challenges and possibly better inform future 

empirical studies. Geoghegan and Spencer (2012) initially developed the population 

epigenetic modelling approach and in two further papers expanded it, examining cases 

with partial modification and paramutation (Geoghegan and Spencer 2013a, 2013b). 

Subsequent entries in the field of population epigenetic modelling consider these three 

initial models foundational (Klironomos et al. 2013, Geoghegan and Spencer 2013c, Furrow 

2014, Furrow and Feldman 2014, Greenspoon and Spencer 2018). For this reason, I will 

summarize and compare the results of these papers in light of the impact of 

transgenerational inheritance on evolution and then extend this analysis by introducing 

intuition from neutral formulations of the models and comparing phenotypic and genotypic 

variation at equilibrium with population genetic models without transgenerational 

epigenetics. 

A series of mechanisms fall under the heading of epigenetic inheritance, which can be 

defined as the transmission of nongenetic gene-regulation-impacting information through 

cellular division (Ashe et al. 2021). ‘Transgenerational epigenetic inheritance’ narrows this 



definition to the transmission of this information across organismal generations which 

requires both that the information survive the meiotic process and the epigenetic 

modification exists in the germline for multicellular organisms. Three major, but non-

exhaustive, mechanics of epigenetic marking are highlighted in the literature: DNA 

methylation, chromatin structure, and regulatory RNA (Ashe et al. 2021, Jablonka 2017). 

Methyl groups attach principally to cytosine nucleotides and are concentrated in CG rich 

sites. These groups have been found to inhibit transcription of the surrounding sequence, 

but the exact effect is poorly understood and is likely to be regulated by chromatin 

structure and other characteristics of the sequences (Ashe et al. 2021). Further, 

methylation has been found to be conserved through mitosis and meiosis in some instances 

due to the symmetrical structure of CG-regions (Jablonka and Raz 2009). Chromatin 

structure impacts transcription by limiting transcriptase access to sections of the 

chromosome that are tightly wrapped in the structural histones (Jablonka and Raz 2009). 

The conservation of this structure through mitosis is well-known due to its contributions to 

differentiating tissues between separate cell-lines, but there is also evidence that this 

structure is maintained between generations (Ashe et al. 2021). A suite of small, persistent 

and poorly understood RNA sequences play a role in transcription and translation 

regulation, with the most notable family being ‘small interfering RNA’ (siRNA) (Ashe et al. 

2021). These short RNA sequences attach to enzyme complexes that attach and inhibit 

homologous DNA sequences or mRNA sequences and persist within the cell body through 

meiosis and mitosis (Jablonka and Raz 2009).  

Before I describe the metrics we will use to identify the relationship between 

transgenerational epigenetic inheritance and evolution, I first introduce terminology to 



differentiate units of genetic and epigenetic variation. I will consider the typical definition 

of a genetic allele, as a sequence of nucleotides found at a specific locus. For example, I 

might name two alleles a and A. I will conceptualize each of the epigenetic modifications 

mentioned above as placing an epigenetic marker on a gene, indicating a functionally 

different version of that gene due to epigenetic modification.  For example, there may be 

two different epigenetic markers for a gene, named 1 and 2. Note, that one ‘epigenetic 

marker’ might be an ‘unmarked’ state, such as no methyl groups present at the site but, as it 

differentiates from the alternative, we will consider both states as different markers. Then, 

an epiallele is a unique combination of genetic allele and epigenetic marker at a locus, so in 

a model with two genetic alleles (a and A) and two epigenetic markers (1 and 2) there 

would be four possible epialleles: 𝑎1, 𝑎2, 𝐴1, 𝐴2.  

Consider again the definition of evolution from Jablonka and Lamb (2007) “changes in 

the nature and frequency of heritable types in a population”. In the one-locus diploid 

models I will be reviewing the heritable types of interest are the unique pairs of epialleles. 

So, to assess their impact on evolution, I will measure epiallele frequency under a variety of 

epigenetic modification mechanisms. As epiallelic variation, by way of epigenotypic 

variation, serves as the fuel for evolutionary change, I will focus on metrics of variation 

specifically, not just epiallelic frequency. Further, as genetic variation is required for future 

genetic evolution, I will also focus on the impact of transgenerational epigenetic 

inheritance on the underlying genetic variation. I will also measure mean population 

fitness as an outcome of epiallelic frequency because it captures the important impact of 

evolution on population dynamics.  



We will look at epiallelic variation through three metrics. The first, Metric A, is the 

number of stable equilibria for a given model and set of parameters. Geoghegan and Spencer 

(2012, 2013a, 2013b) identify the relationship between the number of stable equilibria and 

various parameters in the model which allows the identification of the conditions that can 

lead to states of high and low numbers of stable equilibria. A stable equilibrium can occur 

at a state with many or few epialleles present, so Metric A says nothing about the amount of 

within-population epiallelic variation. Its value instead comes from indicating between-

population epiallelic variation. If a given parameter set, interpreted as a specific 

environment and set of species characteristics, has a high number of stable equilibria, then, 

all else held equal, separate populations are more likely to  have distinct equilibrium states 

and thus varying epiallelic frequencies between populations. This may correspond with 

species-wide epigenotypic variation. 

Metric B provides information about within-population variation by measuring the 

proportion of the stable equilibria identified in Metric A that are internal, meaning that all 

epialleles are present with a frequency greater than zero. Extinction of an epiallele, and 

most extremely, fixation of an epiallele, leads to low variation. Metric B, then, is correlated 

with how commonly a population at equilibrium experiences the likely-high-variation-state 

of internality. Though, two caveats should be made: first, the link between Metric B and 

internal outcomes for a population is mediated by the size of the basin of attraction for 

internal equilibria; secondly not all internally stable equilibria have high epiallelic 

variationas some epialleles may be present at very low, but non-zero frequencies. 



Metric C is the effective number of epialleles in the population at a stable equilibrium, 

providing a finer metric of within-population variation. Using a diversity index, specifically 

the inverse Simpson index, Geoghegan and Spencer (2012, 2013a, 2013b) identify a metric 

that can be interpreted as the number of epialleles a population would have if they had the 

same diversity as the population in question but perfectly even epiallelic frequencies. The 

effective number of epialleles (𝑛𝑒) is computed in a model with three epialleles using this 

equation: 

ne =
1

𝑝1
2 + 𝑝2

2 + ⋯ + 𝑝𝑛
2

 

Where 𝑝𝑖 is the frequency of the 𝑖𝑡ℎ epiallele. 

The previous three metrics are used by Geoghegan and Spencer (2012, 2013a, 2013b) in 

their analyses; to these I introduce Metric D to measure the impact of transgenerational 

epigenetic inheritance on genetic variation. Metric D identifies the difference in genetic 

allele variation between the epigenetic model and a corresponding genetic model. While the 

proper choice of corresponding genetic model depends upon application, I will often use 

the ‘base genetic model’ which is the same model with no epigenetic markers, leaving only 

the genetic component of differentiation between alleles. This model will include no 

mutation as the epigenetic model does not include genetic mutation. This comparison 

isolates the excess genetic variation introduced by the epigenetic dynamics. Alternatively, it 

captures the discrepancy in genetic variation predicted when a genetic-only model is 

misspecified for a population experiencing transgenerational epigenetic inheritance. Metric 

D may also entail a comparison with the ‘equivalent genetic model’ which is a genetic-only 



model with the same number of alleles as epialleles in the model and a similar structure of 

differentiation. For example, the equivalent genetic model of the four epiallele model,  

𝑎1, 𝑎2, 𝐴1, 𝐴2, described above would be a two-locus model with two genetic alleles at each 

locus: 𝑎, 𝐴, 𝑏, 𝐵. 

Finally, I am interested in mean population fitness, which I denote as Metric E and can be 

calculated as the weighted average of epigenotypic fitnesses by the frequency of 

epigenotypes. Fitness is a typical measure of interest in the study of evolution as it 

determines population and species survival. Knowing how it is impacted by changing 

characteristics of the species and environment may identify in what situations epigenetics 

offers a survival advantage or disadvantage. 

I will now review the model specifications and findings for each metric of four diploid 

population epigenetic models from three articles by Geoghegan and Spencer (2012, 2013a, 

2013b). In the first three models they consider situations where an epigenetic modification 

is induced by a specific deme, or environment. An environment need not be interpreted as 

a physical region only, but also possibly as a condition such as drought, starvation, or 

exposure to a pathogen. Model One considers the simplest two epiallele model with no 

genetic variation, Model Two introduces genetic variation and Model Three introduces 

intermediary epigenetic states. Model Four is a paramutation model in which epigenetic 

modification is not induced on an allele by its environment but by its paired allele at the 

same locus.  



For each model I will first describe the specification and set up of the model, then I will 

describe the behaviour of the neutral version of the model in which the fitnesses of all 

epigenotypes are equivalent, and finally I will discuss the results for each relevant metric. 

Model One: Environmental epimodification model with two environments, 

one genetic allele and two epigenetic markers 

Model One, as formulated in Geoghegan and Spencer (2012), describes a diploid 

population with no genetic variation, but two epigenetic markers, 1 and 2. Each individual 

in the population lives its life in Environment 1 or Environment 2, each of which 

corresponds to one of the two epigenetic markers. The conditions in Environment 1 induce 

the marking of an allele with epigenetic marker 1. 𝐴2 epialleles present in individuals in 

Environment 1 are converted to 𝐴1 epialleles with probability 𝑚1, similarly 𝐴1 epialleles 

are modified to 𝐴2 at rate 𝑚2 in Environment 2. We call these probabilities, 𝑚1, 𝑚2, the 

epigenetic modification rates and they have theoretical parallels with mutation rates in 

traditional population genetic models.  



 

Fig. 1. Lifecycle diagram for Model One with two environments and a corresponding epigenetic marker for each environment 

and only one genetic allele. Individuals are randomly sorted into Environment 1 with probability r, with the rest going to 

Environment 2. There, they undergo selection according to environment-specific fitness for their epigenotype, then 𝐴2 alleles in 

Environment 1 are converted to 𝐴2 alleles with probability 𝑚1 with the symmetrical process occurring in Environment 2. 

Gametes are then created and randomly paired across the whole population into new offspring that restart the cycle. 

Fig. 1 illustrates the lifecycle of organisms in Model One. Individuals are randomly 

sorted into Environment 1 with probability r, with the rest going to Environment 2. The 

parameter 𝑟 is interpreted as the frequency of Environment 1 in the meta-environment. 

Once sorted into the environment, organisms undergo selection, surviving the environment 

at a rate equal to their genotype’s fitness in that environment then alleles undergo possible 



epigenetic modification, as previously described. Gametes are then created and randomly 

paired across the whole population, forming new offspring that restart the cycle. 

Individuals in this population have one of three epigenotypes: 𝐴1𝐴1, 𝐴1𝐴2, 𝐴2𝐴2. Each 

epigenotype has two fitness values, one for each environment, resulting in six fitnesses 

within the model: v11, v21, v31, v12, v22, v32, where the first subscript denotes the genotype 

with 1 being 𝐴1𝐴1, 2 indicating the epiheterozygote 𝐴1𝐴2, 3 indicating 𝐴2𝐴2. The second 

subscript indicates the environment. Using this lifecycle and notation, Geoghegan and 

Spencer (2012) derive the following recursion equations for the unnormalized proportions 

of 𝐴1 and 𝐴2 in the next generation, 𝑝1
𝑠 and 𝑝2

𝑠: 

𝑝1
𝑠 = 𝑟𝑝1(𝑝1𝑣11 + 𝑝2𝑣21) + 𝑚1𝑟𝑝2(𝑝1𝑣21 + 𝑝2𝑣31) + (1 − 𝑚2)(1 − 𝑟)𝑝1(𝑝1𝑣12 + 𝑝2𝑣22) 

and 

𝑝2
𝑠 = (1 − r)𝑝2(𝑝1𝑣22 + 𝑝2𝑣32) + 𝑚2(1 − r)𝑝1(𝑝1𝑣12 + 𝑝2𝑣22) + (1 − 𝑚1)r𝑝2(𝑝1𝑣21 + 𝑝2𝑣31) 

Briefly, to understand the first equation, 𝑟𝑝1(𝑝1𝑣11 + 𝑝2𝑣21) represents the unnormalized 

proportion of 𝐴1 epialleles that are sorted into Environment 1 and survive, and 𝑚1𝑟𝑝2(𝑝1𝑣21 +

𝑝2𝑣31) represents the unnormalized proportion of 𝐴2 epialleles that are sorted into Environment 1, 

survive, and are modified into 𝐴1 epialleles. Finally, the last term, (1 − 𝑚2)(1 − 𝑟)𝑝1(𝑝1𝑣12 +

𝑝2𝑣22), describes 𝐴1 epialleles in Environment 2 that survive and are not modified to 𝐴2. The terms 

in 𝑝2
𝑠 are analogous. 

Mean fitness of the population is expressed as �̅� = 𝑝1
𝑠 + 𝑝2

𝑠. The normalized proportion or 

epiallele 𝑖 in the next generation is expressed as 𝑝𝑖
′ =

𝑝𝑖
𝑠

�̅�
. 

 



Neutral Model for Model One 

To understand the behaviour of this model we will first look at its behaviour under 

neutral assumptions, where all fitness values in the model are equal. By also assuming the 

modification rates are equal in both environments, 𝑚1 = 𝑚2 = 𝑚 the expression at 

equilibrium simplifies a great deal: 

𝑝1
′ =

r𝑝1(𝑝1𝑣11 + 𝑝2𝑣21) + 𝑚1r𝑝2(𝑝1𝑣21 + 𝑝2𝑣31) + (1 − 𝑚2)(1 − 𝑟)𝑝1(𝑝1𝑣12 + 𝑝2𝑣22)

�̅�
 

𝑝1
′ =

v11(p1 + p2)(r𝑝1 + 𝑚1r𝑝2 + (1 − 𝑚2)(1 − 𝑟)𝑝1)

v11(p1 + p2)(rp1 + m1rp2 + (1 − m2)(1 − r)p1 + (1 − r)p2 + m2(1 − r)p1 + (1 − m1)rp2)
 

𝑝1
′ =

(r𝑝1 + 𝑚1r(1 − 𝑝1) + (1 − 𝑚2)(1 − 𝑟)𝑝1)

p1 + p2
 

𝑝1
′ = r𝑝1 + mr − 𝑚𝑟𝑝1 + (1 − r)p1 − m(1 − r)p1 

𝑝1
′ = mr + (1 − m)p1 

At equilibrium:      p1
∗ = mr + (1 − 𝑚)p1

∗  

𝑚𝑝1
∗ = 𝑚𝑟 

𝑝1
∗ = 𝑟             for 𝑚 ≠ 0 

In the neutral case, when the modification rate is constant across environments, the 

equilibrium frequency does not depend on the modification rate. The frequency of an allele 

tends towards the frequency of its corresponding environment. The speed of this 

convergence is linear in the modification rate and decreases with the distance from the 

equilibrium frequency: 

Δ𝑝 = 𝑝1
′ − 𝑝1 = 𝑟𝑚 + (1 − 𝑚)𝑝1 − 𝑝1 = 𝑚(𝑟 − 𝑝1) 



If the constant rate of modification between environments assumption is relaxed, the 

expression for equilibrium is slightly more complicated: 

𝑝1
∗ = 𝑚1𝑟 + 𝑝1

∗(1 − 𝑚1𝑟 − 𝑚2(1 − 𝑟)) 

𝑝1
∗ =

𝑚1𝑟

𝑚1𝑟 + 𝑚2(1 − 𝑟)
 

The numerator of this equilibrium epiallele frequency is the product of the frequency of 

the corresponding environment and the modification rate in that environment. Essentially 

this tells us the proportion of other alleles that get modified into the allele of interest in 

each generation. In this case, it is the input of new 𝐴1 alleles as a proportion of 𝐴2 alleles in 

each generation. The denominator is the weighted average of modification rates by the 

frequency of their environments. The entire term can be thought of as the proportion of all 

epialleles subject to modification in any given time step that are in the corresponding 

environment (Environment 1 in this case). When the modification rates are equal, it is 

obvious that this value is just r, the frequency of the corresponding environment. To 

summarize, with neutral fitnesses the equilibrium frequency of an allele is positively 

associated with the frequency of its corresponding environment and modification rate in 

that environment and negatively correlated with the modification rate of other 

environments (and their frequencies, but this is just the inverse of the frequency of the 

alleles corresponding environment. 

Simulation Methods in Geoghegan and Spencer (2012, 2013a, 2013b) 

Equilibrium frequencies for the full Model One can be determined analytically, but the 

closed-form solutions are very complex. This complexity makes analytical stability analysis 



unfruitful. To determine the stability of equilibria in Model One, the authors employ a 

simulation analysis. For each combination of the following set of 𝑟, 𝑚1, 𝑚2 values (0.1, 0.25, 

0.5, 0.75, 0.9), 1000 sets of random fitnesses are generated from a uniform distribution. For 

each of these fitness sets, 1000 random starting frequencies are generated using the 

‘broken stick’ approach employed in Marks and Spencer (1991) and the simulation is run 

using the above recursion equations. A stable equilibrium is identified when the absolute 

change in epiallele frequencies declines beneath 10−12. These methods are employed in all 

future models. 

Findings for Model One 

The relationship between parameters and Metric A, the number of stable equilibria, 

resembles in some ways the patterns for a simple two allele, one locus genetic model. 

Either one or two stable equilibria is possible for each set of parameters. In the case of 

heterozygote advantage, where the mean fitness of the epiheterozygote, 𝐴1𝐴2, weighted by 

the frequency of the environments is greater than the weighted mean fitness of either 

epihomozygote, then there will only be one stable equilibrium at intermediate values of 𝑝1. 

The exact equilibrium frequency for 𝐴1 will be positively correlated with the frequency of 

Environment 1 and the modification rate in Environment 1, and will be determined byt the 

fitness values of all epigenotypes in the population. The equilibrium frequency will be 

positively correlated with relatively high fitness values for epigenotypes containing 𝐴1, and 

with relatively high fitness values for epigenotypes in Environment 1.  

When there is epiheterozygote disadvantage, then two stable equilibriums are possible, 

equivalent in many ways to the fixation equilibria expected under the one-locus two-allele 



genetic without mutation. However, these are never fixation equilibria as when 𝑚1, 𝑚2 > 0 

and 0 < 𝑟 < 1 there is constant addition of both alleles due to epigenetic modification. In 

the case of 𝑚1 = 𝑚2 = 𝑚, as 𝑚 increases these two stable equilibria are brought closer to 

moderate values, until at high levels of 𝑚 only one stable equilibria is present, as pictured 

in Fig. 2. High values of 𝑚 lead to more conversions of the epialleles, overwhelming the 

force of selection.  

 

Fig. 2. Bifurcation diagram of Model One with heterozygote disadvantage for varying values of r. The equilibrium frequency of 

epiallele 𝐴1 is represented on the y-axis while modification rate, assuming 𝑚1 = 𝑚2, is represented on the x-axis. Frequency of 

two stable equilibrium states decreases as modification rate increases. From Geoghegan and Spencer (2012). 

 



The frequency of fitness sets with two stable equilibria decreases as m increases. The 

proportion of fitness sets with two stable equilibria reaches 0 when m reaches a moderate 

value between 0.5 and 0.75, undetermined by Geoghegan and Spencer (2012). These 

findings for m can be generalized to the weighted average of 𝑚1 and 𝑚2 in cases where 

𝑚1 ≠ 𝑚2.  

 

Fig. 3. Equilibrium frequencies of 𝐴1 for cases with two stable equilibriums, represented by hollow circle and triangle markers. 

Equilibrium frequency for one equilibrium is represented on each axis, colours represent varying values of r, and shapes denote 

varying values of 𝑚 = 𝑚1 = 𝑚2. From Geoghegan and Spencer (2012). 

Besides epiheterozygote disadvantage and low mean modification rate, the third 

criterion required for the existence of two stable equilibria in a fitness set is a small 



difference between modification rates, 𝑚1 and 𝑚2. When the difference increases, 

probability of two stable equilibria decreases as the modification rate advantage given to 

one epiallele over the other overwhelms any effects from fitness. 

In this case Metric B, the proportion of internal stable equilibria, is always 1 when 

epigenetic dynamics are active, or  𝑚1, 𝑚2 > 0 and 0 < 𝑟 < 1, due to the constant addition 

of both epialleles in each time step from epimodification. Comparing to the base genetic 

case is meaningless, as the one allele genetic ‘model’ can also be seen as always internal as 

the only allele is always present at equilibrium. If we compare to an equivalent one-locus 

two-allele genetic model without mutation, Model One represents an increase in the 

proportion of internal stable equilibria. To the extent that Metric B provides meaningful 

information about epiallelic variation, this indicates that the existence of any epigenetic 

dynamic increases variation.  

Metric C, the effective number of epialleles at equilibrium, is often low in cases with 

multiple stable equilibria, as these equilibria are typically near fixation. Geoghegan and 

Spencer (2012) find that the effective number of epialleles is inversely related with many 

of the conditions that promote two stable equilibrium states. This pattern can be observed 

in Fig. 3 by the clustering in the corners indicating values of 𝑝1 near 1 or 0 for at least one of 

the two equilibria. The red dots in the figure show the null expectation for these equilibria, 

the highest and lowest values of three random numbers (representing the three possible 

equilibria for the parameter set, the middle of which is unstable). The actual equilibria 

frequencies for equilibria from two equilibria fitness sets is much more extreme than the 



null expectation. Thus, epigenotypic variation, as measured by Metric C, is maximized 

under heterozygote dominance and high mean modification rates. 

As there is no genetic variation in Model One, or the base genetic model, Metric D 

cannot be assessed. 

For Metric E, Geoghegan and Spencer (2012) find that modification rate plays the role 

that mutation rate does in the equivalent genetic model in terms of mean population 

fitness. Due to epigenetic modification, maximum mean population fitness is not reached at 

equilibrium as alleles with lower marginal fitness are constantly introduced to the 

population due to modification. 

Model Two: Environmental epimodification model with two environments, 

two genetic alleles and two epigenetic markers. 

Model Two expands Model One with genetic variation by introducing a second genetic 

allele, represented by 𝑎. This results in four epialleles, 𝐴1, 𝐴2, 𝑎1, 𝑎2, ten possible 

epigenotypes and twenty fitness values in the model. Modification rates, 𝑚1, 𝑚2, are 

identical for 𝑎 and 𝐴 alleles, and all other conditions are identical. Better comparisons of 

genetic and epiallelic variation can be made with this formulation between the epigenetic 

and base genetic model. 

Neutral Model for Model Two 

All the insights from Model One can be extended to this model. Consider that a neutral 

version of the base two-allele genetic model with no mutation, in which all three genotype 

fitnesses are identical, will experience no change in allele frequency and starting 



frequencies will always persist. Then the only axis of functional differentiation is epigenetic 

markers and the frequencies of epigenetic markers will follow the same dynamics as 

described in the neutral version of Model One, while the frequencies of genetic alleles will 

remain constant. This means that genetic variation, Metric D, is not impacted by the 

introduction of epigenetic dynamics under the neutral model, but this pattern does not 

hold when we assume there is variation among the epigenotype fitness values.  

Findings for Model Two 

The maximum value of Metric A is four stable equilibria for a given fitness set, but these 

conditions are rare, with only four examples found in all simulations. Many of the dynamics 

from Model One are maintained here. Like Model One, as 𝑚 = 𝑚1 = 𝑚2 increases, the mean 

number of stable equilibria decreases as can be seen in Table 1.  

(1) (2) (3) (4) (5) (6) (7) 

m No. of 
stable 
equilibria 

Proportion 
of fitness 
sets in 
each 
category 

Proportion 
of internal 
equilibria 
in each 
category 

Normalized 
no. of total 
equilibria 
that are 
internal 

Normalized 
total no. of 
equilibria in 
each 
category 

Total 
proportion 
of internal 
equilibria 

0.1 1 0.452 0.506 0.229 0.452 - 

 2 0.480 0.315 0.302 0.960 - 

 3 0.066 0.303 0.060 0.198 - 

 4 0.002 0.000 0.000 0.008 - 

 Total: - - 0.591 1.618 0.365 

0.25 1 0.596 0.419 0.250 0.596 - 

 2 0.392 0.071 0.056 0.784 - 

 3 0.012 0.000 0.000 0.036 - 

 Total: - - 0.306 1.416 0.216 

0.5 1 0.660 0.410 0.271 0.660 - 

 2 0.340 0.052 0.035 0.680 - 

 Total: - - 0.306 1.340 0.228 
Table 1. Stable equilibria and internal equilibria in Model 2 when r = 0.5. The first four columns are taken from Table 5 of 

Geoghegan and Spencer (2012), the final three are computed from that data. Column 3 represents the proportion of fitness 

sets with a particular number of stable equilibria. Column 4 reports the proportion of stable equilibria from fitness sets with a 

particular number of stable equilibria that are internal. Column 5 is the product of columns 2, 3 and 4, which represents the 

total number of internal stable equilibria in in fitness sets with a particular number of stable equilibria divided by the number of 



fitness sets. Column 6 is the product of columns 2 and 3 which is the total number of stable equilibria in each category. Column 

7 is the ratio of the totals in column 5 divided by column 6 and represents the proportion of stable equilibria that are internal 

for each value of m. 

Table 1 also shows the proportion of stable equilibria that are internal, Metric B. 

Column 4, taken directly from Geoghegan and Spencer (2012), shows the proportion of 

stable equilibria that are internal for fitness sets with a particular number of stable 

equilibria. Internal equilibria are rare among fitness sets with high numbers of stable 

equilibria, as these stable equilibria are often genetic fixation equilibria, where one or the 

other genetic allele is extinct. I compute the total proportion of stable equilibria that are 

internal in Column 7, for three values of m. While the proportion of stable equilibria that 

are internal in each category declines as the modification rate increases (Column 4), the 

proportion of fitness sets with fewer stable equilibria increases as m increases (Column 3). 

This leads to a u-shaped relationship between the modification rate and the proportion of 

stable equilibria that are internal (column 7), initially declining as m increases and then 

increasing at some point near 𝑚 = 0.25. 

No data is provided in Geoghegan and Spencer (2012) about effective number of 

epialleles at equilibrium, Metric C, for Model Two. Data on epiallele frequencies at 

equilibrium across varying parameter values would be required to comment on this metric. 

Information about Metric D, genetic variation, can be derived from the information 

provided in Table 1. Note that at equilibrium, if 𝑚 > 0 and 0 < 𝑟 < 1, 𝑎1 is present if and 

only if 𝑎2 is present because an epigenetic marker cannot go to fixation due to constant 

introduction of both markers by epigenetic modification. The same is true for 𝐴1 and 𝐴2. 

Then, if both genetic alleles are present all four epialleles are present at equilibrium. 

Conversely, if all four epialleles are present (an internal equilibrium) then both genetic 



alleles must be present. Therefore, all internal epigenetic equilibria are genetic 

polymorphic equilibria and vice versa. Now we can interpret the results in Column 7 of 

Table 1 as the proportion of stable equilibria that are genetic polymorphic equilibria and 

compare that to the base genetic model.  

For a one-locus, two-allele, two-environment genetic model we can expect 0.25 of stable 

equilibria produced by simulation to be internal. This result is shown in Appendix 1. This 

expectation is constant across distributions of fitness values used in the model and 

confirmed (in a one-environment model) by simulations in Lewontin et al. (1977). . We can 

compare this base genetic model to the results from Model 2: for 𝑚 = 0.1, 0.365 of stable 

equilibria are internal, for 𝑚 = 0.25 it’s 0.216 and 𝑚 = 0.5 it’s 0.228 (from Table 1, Column 

7). For low modification rates, epigenetic dynamics increase genetic variation over the base 

model. At higher modification rates, the epigenetic mechanisms described in Model 2 

slightly decrease genetic variation over the base genetic model. The mechanism behind this 

phenomenon is not clear. The random selection of more fitness sets does not seem to, by 

itself account for this change from the base genetic model. I suspect that it is a factor of the 

epiallele frequency-dependent nature of the effective genotypic fitnesses in the epigenetic 

model. These will influence the trajectory to equilibrium and may nudge the model towards 

heterozygote advantage or disadvantage states depending on the epimodification rate. But 

more work is required to understand this phenomena. 

Model Three: Partial environmental epimodification model with two 

environments, one genetic allele and three epigenetic markers 



Geoghegan and Spencer (2013a) introduce an amendment to Model One in which 

epigenetic modification induced by the environment can be incomplete. Environments 1 

and 2 are renamed to α and β for clarity. The epigenetic marker associated with 

Environment α is 1 and marker 3 is associated with Environment β. Marker 2 represents a 

moderate epigenetic state between 1 and 3. This can be conceptually considered as a gene 

that has a moderate rate of methylation, histone wrapping or siRNA inhibition, while 1 and 

3 represent the extremes. In an environment, alleles are partially modified at rate 𝑚1 and 

fully modified at rate 𝑚2. The authors often assume, for the sake of simplicity, that 𝑚1 =

2𝑚2 and it is natural to assume that the rate of full modification 𝑚2 is less than the rate of 

partial modification 𝑚1. This means that 𝐴3 alleles in Environment 𝛼 are converted to 𝐴1 

alleles with probability 𝑚2 and converted to the moderate epigenetic marker 𝐴2 at rate 𝑚1 

with the symmetrical process occurring in Environment 2. Otherwise, the lifecycle 

continues as in Model One and is depicted completely in Fig. 4. For the three epialleles 

present, 𝐴1, 𝐴2. 𝐴3, there are six unique epigenotypes with two fitness values each, one for 

each environment. 

Neutral Model of Model Three 

Assuming that all fitnesses are equal, the following relationships of frequencies at 

equilibrium can be derived from the recursion equations 1-7 in Geoghan and Spencer 

(2013a): 

p ∗1=
𝑟(𝑚1𝑝∗2+𝑚2𝑝∗3)

(1−𝑟)(𝑚1+𝑚2)
 p ∗2= rp ∗3+ (1 − 𝑟)p ∗1 p ∗3=

(1−𝑟)(𝑚1𝑝∗2+𝑚2𝑝∗1)

𝑟(𝑚1+𝑚2)
 

 



 

Fig. 4. Lifecycle diagram for Model Three with two environments and partial epigenetic modification in each environment and 

only one genetic allele. Individuals are randomly sorted into Environment α with probability r, with the rest going to 

Environment β. There, they undergo selection according to environment-specific fitness for their epigenotype, then 𝐴3 alleles in 

Environment α are converted to 𝐴1 alleles with probability 𝑚2 and converted to the moderate epigenetic marker 𝐴2 at rate 𝑚1 

with the symmetrical process occurring in Environment 2. Gametes are then created and randomly mated across the whole 

population into new offspring that restart the cycle. 

The numerators of 𝑝 ∗1 and p ∗3 are the rates at which new epialleles of 𝐴1 and 𝐴3 

respectively are introduced to the population through epimodification, while the 

denominator is the proportion of that type of epiallele that are lost in each time step. This 

relationship between numerator and denominator is also true in the expression for 𝑝 ∗2 if 



you multiply the whole expression by 
𝑚1

𝑚1
: the numerator is the proportion of 𝐴1 and 𝐴3 

epialleles that find themselves in the opposing environment and partially modified, while 

all 𝐴2 epialleles face modification in each time step at rate 𝑚1, the denominator. 

This system of equations can be further solved if an assumption is made about the 

relationship between full and partial modification rates. Here, I imitate the assumption in 

Geoghegan and Spencer (2013) by taking 𝑚1 = 2𝑚2. With that assumption, equilibrium 

frequencies of epialleles in the model can be written as functions of only r (see Sympy code 

in Appendix 3 for derivation): 

p ∗1=
𝑟(2𝑟+1)

3
  p ∗2=

4r(1−r)

3
  p ∗3=

(1−r)(3−2r)

3
 

These relationships are best expressed in Fig. 5 which shows that the extreme epigenetic 

states (𝐴1 and 𝐴3) respond similarly to changes in environmental frequency as epialleles 

did in Model One, decreasing their equilibrium frequencies as their environmental 

frequency decreases. But the addition of the moderate epigenetic state, 𝐴2, changes their 

shape into convex curves. The equilibrium frequency of  𝐴2 is maximized at 𝑟 =

0.5. Effective number of epialleles at equilibrium is maximized when environmental 

variation is maximized (moderate levels of r) in the neutral model. As epimodification is 

the determining factor of equilibrium frequencies, diverse environments promote balanced 

equilibrium frequencies by balancing the rates of epimodification to 𝐴1, 𝐴2, 𝐴3 epialleles. 



 

Fig. 5. Equilibrium frequencies in the neutral case for Model Three. Effective number of epialleles at equilibrium is maximized 

when environmental variation is maximized. 

Findings for Model Three 

In Models One and Two, changing the environmental frequency, r, seemed to have little 

to no impact on Metric A, the mean number of stable equilibria for fitness sets. However, in 

Model Three simulation analysis showed the mean number of stable equilibria is much 

higher at moderate levels of r. The mechanism of this change in behaviour is not explored 

in Geoghegan and Spencer (2013), but a hypothesis can be made based on the results of the 

neutral model. Moderate levels of r also promote the rate of production and equilibrium 

frequency of 𝐴2 epialleles. As the existence of this moderate epigenetic marker is what 

differentiates this model from Model One, it would be fitting if the existence of this epiallele 

encouraged multiple stable equilibriums when its rate of production and equilibrium 

frequency in the model is maximized. 



A maximum of three stable equilibria are possible for a fitness set. Two of those 

equilibria are familiar from Model One: one 𝐴1 or 𝐴3 epiallele dominates while the other 

and 𝐴2 are rare. The third equilibrium is dominated by 𝐴2 epialleles. Based on the results of 

the neutral model, I hypothesize that moderate values of r allow for greater 𝐴2 frequencies 

at equilibrium and make this third equilibria possible, increasing the mean number of 

stable equilibria. 

However, this phenomena, of more stable equilibria at moderate r values, is also 

observed when restrictions are imposed that make three equilibria impossible. Geoghegan 

and Spencer simulate the model making what I call the Adaptive Epiallele Assumption: that 

epigenotypes with 𝐴1 epialleles have a fitness advantage over other equivalent epigenotyes 

in Environment α and symmetrically 𝐴3 epialleles are favoured in Environment β. For 

example, 𝑒𝑝𝑖𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 𝐴1𝐴2 has greater fitness than epigenotype 𝐴2𝐴2 in Environment α. 

Under these conditions, three stable equilibria are impossible and the 𝐴2 dominated 

equilibrium is not observed. However, the trend in more mean stable equilibria at 

moderate r persists. I hypothesize that the moderate epigenetic marker increases fitness 

sets that exhibit effective heterozygote disadvantage between 𝐴1 and 𝐴3; and that 

moderate values of r promote 𝐴2 abundance and thus this effective heterozygote 

disadvantage in a way that is not captured in Model One.  

Between population variation, we can conclude, is maximized in the partial modification 

model when environmental variation is high.  

Similar to Model One, because there is no genetic variation in the model, all equilibria 

are internal, including all epigenetic markers, making Metric B irrelevant here. 



If we make the Adaptive Epiallele Assumption, then only moderate levels of r show an 

increase in Metric C, mean effective alleles at equilibrium, over the base genetic model, 

which always has one allele present at equilibrium (see the first graph in Fig. 6). When we 

relax this assumption, this pattern remains for most levels of 𝑚1 (still assuming that 𝑚1 =

2𝑚2); moderate levels of r have the highest effective number of epialleles at equilibrium, 

but 𝑛𝑒 , even in cases with extreme r values, is greater than one (see bottom two graphs in 

Fig. 6).  However, at low values of 𝑚1, effective number of epialleles is elevated for all 

values of r.  

 

Fig. 6. Mean Effective Number of Epialleles for different restrictions on the model and varying values or r and 𝑚1 (here 

expressed as 𝑡1). The first graph, Type 1, indicates the case where the Adaptive Epiallele Assumption has been made. In Type 2 

fitnesses are symmetric between environments (𝐴1𝐴1 epigenotypes have the same fitness in Environment α as 𝐴3𝐴3 does in 

Environment β). In all simulations 𝑚1 = 2𝑚2. Moderate values of r always produce greater effective number of alleles than 



extremes except when 𝑚1 is low and the Adaptive Epiallele Assumption is not being made. From Geoghegan and Spencer 

(2013a). 

 

We can conclude then that if epigenetic modifications are partial and not adaptive to 

their inducing environments, they will greatly increase epigenotypic variation. 

Nonadpative modification avoids the compounding effect from adaptive modification of the 

modified alleles in one environment also having high fitness in that environment and 

strengthening fitness differences. This allows equilibria to exist with more epialleles 

present. But adaptive modifications only increase epigenetic variation in diverse 

environments. Consider that alleles in a model with adaptive modification and one 

environment that dominates face extreme selection pressures which is compounded by 

epimodification to the dominating environment. This results in one frequent epiallele. Only 

in diverse environments does the compounding effect of adaptive modification in one 

environment not overwhelm other forces. 

No genetic variation is present in this model so comparisons of Metric D are irrelevant.  

When we make the Adaptive Epiallele Assumption, mean population fitness, Metric E, is 

correlated with Metric C: balanced fitness values across epigenotypes leads to more 

epigenotypic variation and better mean population fitness. But by relaxing this assumption, 

this relationship reverses: the greater the number of effective epialleles at equilibrium, the 

lower the mean population fitness. Like Model One, higher modification rates introduce 

unfit alleles at equilibrium that decrease mean population fitness. This effect is mostly 

observed at extreme r values, but for moderate r values there is very little correlation 

between effective number of epialleles and mean population fitness. When one 



environment dominates, the difference between marginal fitnesses for each allele is likely 

to be higher, because just the few fitness values in the frequent environment dominate. 

Moderate values of r have a moderating effect on marginal fitness values.  

Model Four: Paramutation Model with Three Epialleles 

Geoghegan and Spencer (2013b) introduce and analyze the behaviour of a simple 

paramutation model. In a paramutation model, epigenetic modification is not induced by 

the environment of the allele but by its paired allele in the genotype. There are some 

paramutagenic alleles, which we will call a, which have the ability to induce epigenetic 

modification in their partner allele in a diploid model. This may be due to a structure that 

allows a great number of bound methyl groups which can be easily transferred to the 

paired allele at the locus, modifying its function. Or it may be due to ability to encode siRNA 

that target that locus. In any case, when a genetically distinct paramutable allele, called A, is 

paired with a paramutagenic allele, a, there is a chance, m, that A will be epigenetically 

modified into the epigenetic allele B. A and B are genetically identical alleles (as indicated 

by both being capitalized in this nomenclature) but have two different epigenetic markers. 

In this model, B not only functions differently than A in terms of fitness but also is itself 

paramutagenic and is able to induce epigenetic modification in other paired alleles in the 

future.  

The final characteristic that differentiates this model is the introduction of a chance of 

epigenetic reset from B to A in all time steps. The epigenetic modification is considered 

impermanent and B epialleles can revert to A alleles at a standard rate t in each generation. 



The full lifecycle diagram is depicted in Fig. 7 which highlights that in this model epigenetic 

modification and reset happen concurrently. 

 

 

Fig. 7. Lifecycle Diagram for Model Four, paramutation with three epialleles. Offspring are produced and go through selection 

based on the fitness values of their epigenotypes. Then epigenetic modification of A, induced by partner alleles B or a happens 

concurrently with epigenetic reset and gametes are produced and mixed. 

 

Neutral Model for Model Four 

If we assume that the modification rate and the reset rate are identical, 𝑚 = 𝑡, then a 

clear relationship between the equilibrium frequencies and the starting frequency of the 



paramutagenic allele a can be derived under the neutral fitness assumptions. First note, 

similarly to the genetic components of Model Two, that under neutral assumptions there 

are no pressures acting on the frequencies of the genetic alleles a and A (remembering that 

epiallele B is merely an epigenetically marked form of A). For this reason, the frequency of 

epiallele a will remain constant in the neutral model and the equilibrium frequency will 

equal the initial frequency. As this is a fixed value, we will describe the equilibrium 

frequencies of the other epialleles based on this initial frequency of a. The following 

relationships are found in the neutral case: 

𝑝 ∗𝐴= 1 − √𝑝 ∗𝑎 𝑝 ∗𝐵= √𝑝 ∗𝑎 (1 − √𝑝 ∗𝑎) 

These relationships are displayed in Fig. 6. Two major effects are at play here: as 𝑝 ∗𝑎  

increases, the frequency of the genetic allele A, and thus the combined frequency of the 

epialleles A and B must decreases. The frequency of B at equilibrium both depends on 

having a large enough stock of a to induce the epigenetic modification in B and enough A to 

be converted into B. Thus, increases in 𝑝 ∗𝑎  at low overall levels of 𝑝 ∗𝑎  are beneficial to 

𝑝 ∗𝐵  as a serves as a catalyst for paramutation, but after a certain point this beneficial effect 

of 𝑝 ∗𝑎 is overwhelmed by the negative effect of the decrease in initial A that serves as fuel. 

This creates the hump-shaped relationship between 𝑝 ∗𝑎 and 𝑝 ∗𝐵 observed in Fig. 8.  



 

Fig. 8. Equilibrium frequencies across initial frequencies of epiallele a in the neutral case for Model Four.  

 

Findings for Model Four 

Four types of stable equilibria are possible when 𝑚, 𝑡 > 0: fixation of a, fixation of A, 

elimination of a leading to a balance of A and B, and a fully internal equilibrium. Note that 

equilibria where just 𝑎 and 𝐴,  𝑎 and 𝐵, 𝑜𝑟 𝑗𝑢𝑠𝑡 𝐵 are present are impossible when 𝑚, 𝑡 > 0, 

due to the constant introduction of 𝐴 and 𝐵 epialleles due to paramutation and reset  A 

maximum of three stable equilibrium were found by simulation analysis for a single fitness 

set (Geoghegan and Spencer 2013b). Increasing the reset rate, t, decreased the mean 

number of stable equilibria for fitness sets. When t = 1, B epialleles are immediately reset to 

A in the generation following their paramutation, this approximates a model with only A 

and a epialleles present, which is just the underlying base genetic model with two alleles.  

Thus, as t increases, the model approaches this state and loses the chance of resulting in the 

extra stable equilibrium made possible by the third epiallele B. The relationship between 



the modification rate, m, and Metric A is complex in this model and appears to change 

significantly if you relax the assumption that a and B induce epigenetic modification in A at 

the same rate. In general, the relationship is strongest at low levels of reset, t, where mean 

number of stable equilibria decreases as m increases, matching the behaviour of other 

models. 

 

Fig. 9. Proportion of fitness sets that result in the four types of stable equilibria in Model Four across varying levels of m and t. 

Here epiallele B is denoted by A*. The proportion of fitness sets resulting in internal stable equilibria (denoted by the lightest 

blue-grey colour bar in the main diagram) seems to be consistent across values of m and t. The inset figure with the grey 

background shows the proportion of fitness sets resulting in 6 different equilibrium types when m, t = 0; which is equivalent to 

the three-allele, one-locus genetic model. From Geoghegan and Spencer (2013b). 

 

The proportion of fitness sets with an internal stable equilibrium is consistent across 

values of t and m, with about 20% of fitness sets demonstrating this trait in the simulation 

analysis employed by Geoghegan and Spencer (2013b). This is demonstrated by the fourth, 



lightest blue-grey bar in the main charts in Fig. 9. This is not quite the same metric as 

employed in the previous discussion of Metric B for Model Two where I examined the 

proportion of equilibria that were internal, making comparison difficult. However, we 

know that at low reset rates, t, mean stable equilibria decrease as m increases. Geoghegan 

and Spencer (2103b) also demonstrate that for most fitness sets, only one stable equilibria 

is internal. For low t and increasing m then, each fitness set has fewer equilibria, but the 

same proportion of fitness sets have internal equilibria, making internal equilibria a larger 

share of stable equilibria as m increases. Making conclusions about the rest of parameter 

space is unfortunately more difficult. 

Fig. 10 shows that tor all values of m and t, mean alleles at equilibrium, Metric C, 

increases over the base 2-allele genetic model (which has effective alleles at equilibrium of 

1.33). Except when t is very near to 1 and m is very near to 0 (approximating the 2-allele 

genetic model case) the mean number of epialleles at equilibrium is greater than the value 

for the equivalent three-allele genetic model (denoted by the grey line on Fig. 10). We can 

conclude that in comparison to the base genetic model epigenotypic variation always 

increases with the addition of paramutation dynamics and that the epigenetic variation 

from a paramutation model is almost always greater than a genetic model with an 

equivalent number of alleles as epialleles. 



 

Fig. 10. Mean number of epialleles at equilibrium, Metric C, across levels of m and t. 𝑛𝑒 decreases consistently with increasing 

reset, t, and decreasing modification rate, m. From Geoghegan and Spencer (2013b). 

Effective alleles at equilibrium decreases with increasing t (reset rate), as B alleles are 

increasingly reset to A, lowering variation. This same metric increases with increasing 

modification rate, m. 

It is not at first obvious why a condition with high modification rate, m,  and low reset 

rate, t,  does not decrease effective alleles at equilibrium as B would dominate A. But this 

intuition is gained when you realise that changes in t have a much higher impact on the 

model than changes in m. All B alleles are undergoing reset, no matter their allelic partners. 



Where A alleles must be matched with B or a to be affected by modification. This means 

that the effect of t dominates m, and even high values of m cannot overwhelm it. 

I turn my attention to evaluating Metric D, genetic variation, for this model. Considering 

the four types of equilibria that are possible in this model, one notices that there is no 

equilibrium where only a and A exist, or only a and B. This means that the only equilibria 

which are genetic polymorphisms are the fully internal equilibria. With this knowledge, we 

can identify the proportion of genetic polymorphic equilibria from the data presented in 

Fig. 9. As mentioned in the previous paragraph about Metric B, proportion of fitness sets 

with internal equilibria is constant at ~0.2 across all values of m and t. In comparison, 0.33 

of fitness sets randomly generated for the base genetic 2-allele model have a genetic 

polymorphic equilibrium (Lewontin et al. 1978). Consistently then, modelling predicts that 

two allele systems where one allele is paramutagenic will have lower genetic variation at 

equilibrium on average then two allele systems with no epigenetic dynamics.  

Geoghegan and Spencer (2013b) find that increasing the paramutation rate m, decreases 

mean population fitness, Metric E, across all simulation results and especially when the 

reset rate, t, is low. This effect is analogous to “mutation load” in genetic models with 

mutation. 

Discussion 

Summation and Comparison of Findings 

Table 2 summarizes the findings and comparisons between Models One through Four 

for all Metrics A through E. The major findings are as follows: 



 

  

Model One – 
environmental 
modification 
without genetic 
variation. 

Model Two – 
environmental 
modification with 
genetic variation. 

Model Three – 
partial 
environmental 
modification 

Model Four - 
paramutation 

Metric A - # of 
stable eq. 

Decreases with 
increasing m. 
 
Maximized under 
heterozygote 
disadvantage. 
 
Maximized when 𝑚1 
close to 𝑚2. 
 
No relationship with r. 

Decreases with 
increasing m. 
 
 
 
 
 
 
 
 
No relationship with r. 

  
 
 
 
 
 
 
 
 
Maximized at 
moderate values of r. 

Decreases with 
increasing m for low 
values of t. 
 
Decreases with 
increasing t. 
 
 
 
 
 

Metric B – 
prop. of 
internal stable 
eq. 

All equilibria internal. 
Decreases as m 
increases to ~0.25 and 
then increases after. 

 All equilibria internal. 

For low t values, 
increases as m 
increases.* 
 
 

Metric C – 
effective # of 
epialleles at 
eq. 

Increases with 
increasing m. 
 
Maximized under 
heterozygote 
advantage. 

 No data. 

Maximized for 
moderate values of r. 
 
Increased by balanced 
fitness values. 
 
Increased when 
epialleles have no 
selective advantage in 
inducing environment. 

Increases with 
increasing m. 
 
Decreases with 
increasing t. 

Metric D – 
genetic 
variation at 
eq. 

No genetic variation. 

Measure proportion of 
stable equilibria that 
are genetic 
polymorphisms. 
 
Higher than base 
model for low values of 
m. Lower than base 
model for high values 
of m. 

 No genetic variation. 

 Measure proportion of 
fitness sets with 
genetic polymorphic 
equilibriums. 
Constant across all 
values of m and t at 
0.2. 
 
Lower than base model 
in all cases. 

Metric E – 
mean 
population 
fitness at eq. 

Decreases with 
increasing m. 

No data. 

Under AEA: positive 
relationship with 
Metric C. 
 
Otherwise: negative 
relationship with 
Metric C and decreases 
with increasing m. 

Decreases with 
increasing m; effect 
heightened under low 
reset rate. 

Table 2. Summary and comparison of findings in Models One through Four for all five metrics. m = 

epimodification rate, t = reset rate, r = frequency of environment 1 or α  *Note that the proportion of 

fitness sets with internal stable equilibria is constant across m, t at 0.2. 



 

(1) In nearly all cases epigenotypic variation increases in the epigenotypic model over 

the base genetic model. The addition of epigenetic markers increases the number of 

epialleles and thus total variation. Also, epimodification, analogous to mutation, increases 

diversity by continually introducing less fit alleles at equilibrium. The major exception is 

when measuring epigenotypic variation with Metric B, but here comparisons with a base 

genetic model should be discarded because the number of epialleles decreases in the base 

genetic model making internal equilibria easier to attain. 

(2) The mean number of stable equilibria (Metric A) decreases with increasing m in 

almost all models. Varying fitness among genotypes, specifically epiheterozygote 

disadvantage, tends to give rise to more co-existing stable equilibria in a fitness set. High 

rates of epimodification overwhelm the effect of these differences, pulling the system 

towards a single equilibria. There is no conclusive evidence of this relationship in Model 

Three. 

(3) In the two models with multiple genetic alleles (Two and Four), genetic variation 

decreases when epigenetic modification is introduced to the model in almost all cases. The 

only exception is when modification rate is low in Model Two, then genetic variation is 

increased over the base genetic model. 

(4) For the three models where mean population fitness was investigated, as m 

increases, mean population fitness at equilibrium decreases. This relationship can be 

understood as ‘epimodification load’ an analog to “mutation load” in genetic models, the 



decreases in mean population fitness when mutation increases in genetic population 

models. 

Suggestions for Models to be Studied 

A major finding from research into epigenetic mechanisms is the relatively high rate of 

reset that epigenetic markers undergo int the processes of mitosis and meiosis. The 

chromosome restructuring in these periods leads to a high rate of disruption for epigenetic 

structures (Ashe et al. 2021). This sort of reset is analogous to the reset employed in the 

paramutation model in this paper. Intuitively, reset is the removal of an epigenetic marker 

to some ‘unmarked’ or default epigenetic state. This dynamic is not included in Models One 

through Three, and instead if an ‘unmarked’ epigenetic state is included it takes the form of 

one of the epialleles and ‘reset’ to this state only occurs as modification in one 

environment. Conceptually reset should be occurring in all environments whenever 

gametes are formed through meiosis.  

To confuse matters, in the original Geoghegan and Spencer papers (2012 and 2013a) the 

term ‘reset’ is used to refer to the process I call modification and the parameter that I call 

‘m’. The action associated with this parameter I think is better conceptualized as a rate of 

modification and if reset were to be considered in models of this type it should be done in a 

way resembling reset in the paramutation model, Model Four. In that spirit, I outline two 

models, one simple and one more complicated, that introduce this process of reset to 

environmentally-induced epigenetic population models.  

 



Model Five: Two Environment Model with Two Epigenetic Alleles: One ‘Unmodified’, One 

Induced by Environment 

There are two environments in this model, one ‘Ancestral’ that does not induce any 

epigenetic modification and one ‘Novel’ environment that does. There are two epigenetic 

markers, one indicating the unmarked state, the other being marked. There is only one 

genetic allele. 𝐴 is the unmarked epiallele, 𝐴1 is the marked epiallele. As an A allele leaves 

the ‘Novel’ environment it is modified to 𝐴1 with probability m. After, all 𝐴1 alleles in both 

environments are reset to A with probability t. 

I have performed preliminary analysis on this model (the code is provided in Appendix 

2), running simulations for several fitness sets and across parameter space and found that 

it seems to generate very simple dynamics with a maximum of one stable equilibrium for 

all fitness sets examined. I have observed that the model is very sensitive to increasing 

reset rate and even moderate values overwhelm any variation in the modification rate.  

Under neutral fitness conditions, the equilibrium frequencies of this model are: 

𝑝 ∗𝐴=
𝑡

(1−𝑟)𝑚(1−𝑡)+𝑡
  𝑝 ∗𝐴1=

(1−𝑟)𝑚(1−𝑡)

(1−𝑟)𝑚(1−𝑡)+𝑡
 

These relationships are very similar to those observed in Model One: t is the rate at 

which new 𝐴 epialleles are being introduced to the population as a proportion of 𝑝𝐴1, and 

(1 − 𝑟)𝑚(1 − 𝑡)  is the rate at which new 𝐴1 epialleles are introduced to the population as 

a proportion of 𝑝𝐴 . Then, just like in Model One, the equilibrium frequency of an epiallele is 

the rate at which it is introduced, divided by the total rate that new epialleles are 

introduced. 



The behaviour in this model is likely highly simplistic, but it is chosen as the simplest 

model available from which to build upon. To observe more characteristic epigenetic 

phenomena I suggest that a model with more than one ‘modified’ epigenetic marker is 

required, bringing us to Model Six. 

Model Six: Two Environment Model with an ‘Unmodified’ Epigenetic Allele and Two 

Modified Epigenetic Alleles with Early and Limited Modification 

There are two environments in this model, 1 and 2, both of which induce epigenetic 

modification of alleles to their corresponding epigenetic markers, 1 and 2. There is a third 

‘unmarked’ epigenetic marker and only one genetic allele, leading to three epialleles: 

𝐴, 𝐴1, 𝐴2.  

Modification in this model is ‘limited’ meaning that modification only occurs for the 

‘unmarked’ A epialleles. Modification in this model is also ‘early’ meaning that it occurs as 

an individual is sorted into an environment and before selection. Note that if we assume 

that A1 and 𝐴2 have higher fitnesses in their associated environments, high modification 

rates and high reset rates allow perfect adaptability and high mean population fitness in 

this model. High reset rates dictate that most epialleles are type 𝐴 when entering an 

environment and high modification rates mean that most will be modified into, in this case, 

the preferred epiallele in the environment, which will increase fitness. This model then 

captures some of the more beneficial effects of epigenetic response that is observed in 

nature. Decreasing reset and modification rates captures some of the detrimental side 

effects of these transgenerational epigenetic mechanisms when organisms are left 

epigenetically mismatched to their environment. 



The Unique Nature of Evolutionary Processes under Epigenetic Conditions 

What makes analysis of evolution in the epigenetic context unique, especially when 

looking at genotypic frequencies, is the fact that fitness of genotypes is non-constant in 

epigenetic models. The marginal fitness of any genotype is frequency dependent on 

underlying epigenotypes. In this way, the genetic evolution of the system cannot be 

separated from its epigenetic components, making analysis that much more complicated 

and necessitating the simulation methods employed here. This fact is also a useful insight 

into how the overlaying of epigenotypic processes on top of a two-allele genetic model in 

Models Two and Four can impact the distribution of genetic polymorphisms at equilibrium. 

The introduction of epigenetic markers does not only change the fitness of a genotype (in 

an environment) but also makes it dynamic as a model iterates. 

Best Practices for Observing Evolutionary Outcomes from Population Epigenetic 

Models 

Geoghegan and Spencer (2012, 2013a, 2013b) did not approach their studies with the 

explicit goal in mind of evaluating the impact on evolution from epigenetic processes. As 

foundational papers in these modelling techniques, their findings focus on broad 

understandings of the behaviours of these models across parameter space and the 

limitations and interpretations of the numerical simulation techniques. Some of my 

conclusions in this study have been limited by a lack of reporting on important metrics in 

some studies and inconsistency in the characteristics of the models being measured. If one 

were to freshly approach the question of evaluating these models for their impact on 



epigenotypic and genotypic frequencies and comparing these results with base and 

equivalent genetic models, a more comprehensive understanding could be achieved. 

I see two major strategies for analysis: the remove-and-compare approach undertaken 

here and the trajectory approach that I will describe.  

The remove-and-compare approach involves running an epigenetic model to 

equilibrium and comparing with a base or equivalent genetic model at equilibrium. If one 

wishes to compare genetic variation, you can remove epigenetic markers and do so. This is 

the approach undertaken in this paper, using the data presented by Geoghegan and 

Spencer (2012, 20131, 2013b) and comparing to genetic models. Re-simulating the results 

would allow asking and answering a further set of questions. First the proportion of 

parameter space, including starting frequencies, could be evaluated. One could ask what 

proportion of parameter space leads to genetic polymorphisms or equilibria with high 

effective numbers of epialleles. Further, we could better evaluate which starting 

frequencies and which fitness sets lead to these high variation outcomes. As not all 

parameter values are relevant or realistic in the natural context, knowing under what 

conditions these results matter allows us to evaluate how these findings can be applied. 

The trajectory-approach compares the trajectory that the full epigenetic and base 

genetic models take to equilibrium. As natural systems often face disturbances that 

preclude any approximation of an equilibrium, the trajectory could be more important to 

consider than the equilibrium. If an epigenetic model approaches equilibrium quickly or 

slowly or spends more time in high or low variation states this could have meaning for the 

impact of epigenetic dynamics on long-term evolution. The functional, curve-based data 



that results from this analysis will be more difficult to synthesize, so focus will likely need 

to be placed on comparing specific parameter sets of interest, such as those that replicate 

some natural conditions or produce the largest difference between trajectories. To my 

knowledge, no studies of this type using population epigenetic modelling have been 

completed, but Day and Bonduriansky (2011) perform a similar analysis using a model 

based on the Price equation and could serve as a guide to future efforts in population 

epigenetics. 

Conclusion 

The results of this paper show both that transgenerational epigenetic inheritance has a 

meaningful impact on evolution and that population epigenetic modelling is an effective 

way of deriving insights about these effects. If we consider the heart of a new evolutionary 

synthesis to be redefining evolution to include non-genetic components, then these results 

support this redefinition Transgenerational epigenetic inheritance impacts evolution 

through two axes: demonstrating a positive effect on epigenotypic variation, and a variable 

but mostly negative effect on genetic variation. These effects need to be understood for a 

complete comprehension of evolutionary processes. However, this paper also shows that 

traditional methods, like population genetic modelling, can be employed effectively in 

investigating this broader definition of evolution. Traditional methods need not be 

discarded in a new evolutionary synthesis.  

The potential of population epigenetic modelling, I believe, has not yet been fully tapped. 

Approaches focused on identifying the regions of parameter space that lead to high 

variation outcomes, and trajectory-approaches will enrich our understanding further. 



Additionally, the formulation possibilities of these models are not exhausted and there is 

more room for exploration, especially when incorporating epigenetic reset into these 

models. The methods and approach pioneered by Geoghegan and Spencer (2012, 2013a, 

2013b) form a broad launch pad for future research. 
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Appendix 1 – Simulation probabilities of internal equilibria in a one-locus, 

two-allele, two environment, genetic model 

In order to determine the expected proportion of stable equilibria found in a simulation of 

the type described in Geoghegan and Spencer (2012) and Lewontin et al. (1978) that are 

internal, we must determine the probability of fitness sets that express overdominance, 

underdominance or directional selection. This is because we know the nature of stable 

equilibria under each of these cases. Fitness sets demonstrating directional selection, 

where 𝑣11 > 𝑣12 > 𝑣22 or 𝑣11 < 𝑣12 < 𝑣22, have one stable, and non-internal equilibrium. 

Fitness sets with underdominance where the heterozygote is selected against, 𝑣11 > 𝑣12 <

𝑣22,  have two stable, non-internal equilibria. Fitness sets with overdominance, where the 

fitness of the heterozygote is highest, 𝑣11 < 𝑣12 > 𝑣22, have one stable and internal 

equilibria.  

If we were interested in a one-locus, two-allele model with only one environment, the 

results of Lewontin et al. (1978) could directly tell us that each of these fitness cases occurs 

with a probability of 1/3 and because of this and the characteristics mentioned above, 

internal stable equilibria occur with a frequency of 1/4. When a second environment is 

added to the model, little changes in the purely genetic case: members of each genotype are 

split into the two environments at the same rate (r and 1-r) before they experience 

selection according to their specific fitness value in that environment. Because of this, each 

genotype can be thought of as having an effective fitness which is a weighted average of 

their fitness values in each environment. If 𝑣𝑥𝑦𝑧 represents the fitness of genotype 𝐴𝑥𝐴𝑦 in 

environment 𝑧, then the effective fitness of genotype 𝐴𝑥𝐴𝑦 is: 

𝑣′𝑥𝑦 = 𝑟𝑣𝑥𝑦1 + (1 − 𝑟)𝑣𝑥𝑦2 

With this change, the rest of the model can be considered to mathematically function in the 

exact same way, with no more impact from the two environments. However, what is now 

important is that the distribution of the effective fitness of a genotype in the two-

environment model is no longer the same as the distribution of the fitness of the genotype 

in the one-environment model. If we consider the fitnesses for each environment to be 

chosen from a standard uniform distribution, the distribution of the effective fitness 𝑣′𝑥𝑦 is 

not uniform but follows an Irwin-Hall distribution which is the distribution of a sum of 

uniform random variables.  

The question becomes: can the results of Lewontin et al. (1978) be extended to this two-

environment case? The following calculations of the expected frequencies of the different 

fitness types for a fitness set, overdominance and underdominance (the frequency of 

directional selection can be derived from these other two as the remaining fitness sets), 

demonstrate that these results can be extended. It turns out that as long as the distrubtion 

of each fitness is identical the frequency of these fitness set types do not depend on the 

distribution of each fitness value. As the distribution of each fitness value is identical in the 

two-environment model, we can conclude that in the two-environment model 



overdominance occurs with a frequency of 1/3, overdominance with a frequency of 1/3 

and directional selection with a frequency of 1/3 and that ¼ of simulated equilibria will be 
internal.  

Overdominance 

𝑃(𝑣11 < 𝑣12, 𝑣22 < 𝑣12|𝑣12) = 𝐹𝑣11
(𝑣12)𝐹𝑣22

(𝑣12) 

𝑃(𝑣11 < 𝑣12, 𝑣22 < 𝑣12) = ∫ 𝐹𝑣11
(𝑥)𝐹𝑣22

(𝑥)𝑓𝑣12
(𝑥)𝑑𝑥

1

0

 

All 𝑣11, 𝑣12, 𝑣22 have identical distributions, being the weighted (by r, 1-r) averages of two 

standard uniform random variables. So we can express the above formula in terms of the 
variable 𝑣 with the same distribution: 

= ∫ 𝐹𝑣(𝑥)𝐹𝑣(𝑥)𝑓𝑣(𝑥)𝑑𝑥
1

0

 

= ∫ 𝐹𝑣(𝑥)2
1

0

𝑓𝑣(𝑥)𝑑𝑥 

Let 𝑢 = 𝐹𝑣(𝑥), 𝑑𝑢 = 𝑓𝑣(𝑥)𝑑𝑥, then: 

𝑃(𝑣11 < 𝑣12, 𝑣22 < 𝑣12) = ∫ 𝑢2
1

0

𝑑𝑢 

=
𝑢3

3
|0
1 

=
𝐹𝑣(1)3

3
−

𝐹𝑣(0)3

3
 

 

=
13

3
−

03

3
 

 

=
1

3
 

Underdominance (Heterozygote Disadvantage) 

A similar process shows that the expected frequency of underdominant fitness sets in a 

simulation with uniformly distributed fitnesses is 1/3 also: 

𝑃(𝑣11 > 𝑣12, 𝑣22 > 𝑣12|𝑣12) = (1 − 𝐹𝑣11
(𝑣12)) (1 − 𝐹𝑣22

(𝑣12)) 



𝑃(𝑣11 > 𝑣12, 𝑣22 > 𝑣12) = ∫ (1 − 𝐹𝑣11
(𝑥)) (1 − 𝐹𝑣22

(𝑥)) 𝑓𝑣12
(𝑥)𝑑𝑥

1

0

 

All 𝑣11, 𝑣12, 𝑣22 have identical distributions, being the weighted (by r, 1-r) averages of two 

standard uniform random variables. So we can express the above formula in terms of the 
variable 𝑣 with the same distribution: 

= ∫ (1 − 𝐹𝑣(𝑥))(1 − 𝐹𝑣(𝑥))𝑓𝑣(𝑥)𝑑𝑥
1

0

 

= ∫ (1 − 𝐹𝑣(𝑥))
2

1

0

𝑓𝑣(𝑥)𝑑𝑥 

Let 𝑢 = 𝐹𝑣(𝑥), 𝑑𝑢 = 𝑓𝑣(𝑥)𝑑𝑥, then: 

𝑃(𝑣11 > 𝑣12, 𝑣22 > 𝑣12) = ∫ (1 − 𝑢)2
1

0

𝑑𝑢 

= −
(1 − 𝑢)3

3
|0
1 

= −
(1 − 𝐹𝑣(1))

3

3
+

(1 − 𝐹𝑣(0))
3

3
 

= −
(1 − 1)3

3
+

(1 − 0)3

3
 

=
1

3
 

 

 

 

 

 

 

  



Appendix 2 – Python code for simulation of Model 5 

A Jupyter Notebook file is also attached to this submission with this code. 

from sympy import * 

init_printing() 

from matplotlib import pyplot as plt 

colormap = plt.get_cmap("viridis") 

divisions = 5 + 1  

 

fig, axs = plt.subplots(nrows=(divisions), ncols=(divisions), 

figsize=(((divisions-1)*4),((divisions-1)*4))) 

 

for k in range(0,divisions): 

    for j in range(0,divisions): 

        for h in [0.1, 0.5, 0.9]: 

            for i in range(0, divisions): 

             

                r = k/(divisions-1) 

                t = i/(divisions-1) 

                s = j/(divisions-1) 

                p1 = h 

                p2 = 1 - p1 

                v11 = 0.8 

                v12 = 0.4 

                v21 = 0.2 

                v22 = 0.1 

                v31 = 0.8 

                v32 = 0.8 

                record =[p2] 

                change = 1 

                while abs(change) > 10**-3 and len(record) < 51: 

                    p1_s = r*(p1*(p1*v11 + p2*v21) + p2*s*(p1*v21 + p2*v31)) 

+ (1-r)*(p1*((1-t)+t*s)*(p1*v12+p2*v22) + s*p2*(p1*v22 + p2*v32)) 



                    mean_fitness = r*(p1*p1*v11 + 2*p2*p1*v21 + p2*p2*v31) + 

(1-r)*(p1*p1*v12 + 2*p1*p2*v22 + p2*p2*v32) 

                    p1_next = p1_s/mean_fitness 

                    if p1_next > 1: 

                        p1_next = 1 

                    elif p1_next < 0: 

                        p1_next = 0 

                    change = p1_next - p1 

                    record.append(1 - p1_next) 

                    p1 = p1_next 

                    p2 = 1 - p1 

 

                axs[j, k].plot(record, label='t = '+str(t), color = 

colormap(float(t))) 

                axs[j, k].set_ylim(0,1) 

                 

                if j==0 and k==0 and h==0.1 and i==divisions-1: 

                    axs[j, k].legend() 

 

        if j==0: 

            axs[j, k].set_title("r = "+str(r)) 

        if k==0: 

            axs[j,k].set_ylabel("s = "+str(s), rotation=0, size='large') 

     

plt.ylim(0,1)    

plt.tight_layout 

plt.savefig("MRdiploidwithfitness-"+str(v11)+"-"+str(v12)+"-"+str(v21)+"-

"+str(v22)+"-"+str(v31)+"-"+str(v32)+".png") 

  



Appendix 3 

Code for derivation of neutral equilibriums in Model 3. Jupyter notebook with this code 

attached to this submission. 

from sympy import * 

from sympy.solvers.solveset import linsolve 

init_printing() 

p1, p2, p3, r, t1, t2 = symbols('p1 p2 p3 r t1 t2') 

 

# MODEL THREE 

t1=t2*2 

p1s = r*(t1*p2+t2*p3)/((1-r)*(t1+t2)) 

p2s = r*p3 + (1-r)*p1 

p3s = (1-r)*(t1*p2+t2*p1)/(r*(t1+t2)) 

eqs = linsolve([p1s-p1, p2s-p2, p3s-p3, p1+p2+p3-1], p1, p2, p3).args[0] 

eqs 

pa, pA, pB, m1, m2, t, m = symbols('pa pA pB m1 m2 t m') 

m1=m 

m2=m 

t=m 

pAs = pA**2 + (1-m1)*pA*pa + (1-m2)*pA*pB + t*pB 

pBs = (1-t)*pB + m1*pA*pa + m2*pA*pB 

sols1 = nonlinsolve([pAs-pA, pBs-pB, pa+pA+pB-1], pA, pB).args[0] 

sols2 = nonlinsolve([pAs-pA, pBs-pB, pa+pA+pB-1], pA, pB).args[1] 

print(sols1[0]) 

print(sols1[1])  
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