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Question 1 (20%) Here we investigate the demography of a mustard plant, Boechera stricta,
following Cotto et al. (2019).

B. stricta has two key stages: immature (non-reproductive) and mature (reproductive). A
fraction sI of immature individuals survive each year, of which a proportion m mature. Each
mature individual produces f seeds that survive to become immature individuals in the following
year, and a proportion sM of mature individuals survive and remain mature.

(a) (4%) Write down recursion equations for the number of immature, I, and matrure, M , indi-
viduals. Write out the corresponding transition matrix, M.

Solution

The recursion equations for I and M are

I(t+ 1) = sI(1−m)I(t) + fM(t)

M(t+ 1) = sImI(t) + sMM(t)

This gives transition matrix

M =

(
sI(1−m) f
sIm sM

)

(b) (4%) Write down the characteristic polynomial for M.

Solution

The characteristic polynomial is

|M− λI| =
∣∣∣∣sI(1−m)− λ f

sIm sM − λ

∣∣∣∣
= (sI(1−m)− λ)(sM − λ)− fsIm
= λ2 − (sI(1−m) + sM )λ+ sI(1−m)sM − fsIm
= λ2 − Tr(M)λ+ Det(M)

Cotto et al. (2019) used published data to estimate parameters values for B. stricta and found
that the two eigenvalues are approximately λ = 3 and λ = 1/2. With their estimated parameter

values the right eigenvector associated with λ = 3 is approximately

(
1/10
9/10

)
and the right eigen-

vector associated with λ = 1/2 is approximately

(
11/10
−1/10

)
. The left eigenvector associated with

λ = 3 is approximately
(
1 15

)
and the left eigenvector associated with λ = 1/2 is approximately(

1 −1/10
)
. Use these estimates in your answers below.

(c) (4%) What is the leading eigenvalue? Is the population expected to grow or decline?
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Solution

The leading eigenvalue in discrete-time is the one with the largest absolute value, here
λ = 3. Because this is larger than 1 we expect the population to grow.

(d) (2%) What fraction of the population do we expect to be reproductively mature in the long-
run?

Solution

The fraction of each type in the long-term is given by the right eigenvector associated

with the leading eigenvalue,

(
1/10
9/10

)
. Since this already sums to one we can simply read

off that 1/10 of the population will be immature and 9/10 of the population with be
mature in the long-run.

(e) (2%) What is the reproductive value of a mature individual relative to an immature individ-
ual?

Solution

The reproductive value of each type is given by the left eigenvector associated with the
leading eigenvalue,

(
1 15

)
. Since this is already normalized relative to the reproductive

value of an immature individual we can simply read off that the relative reproductive
value of a mature individual is 15.

(f) (4%) The general solution for this system can be written ~n(t) = ADtA−1~n(0). Write out the
entries of D and A.

Solution

The matrix D is a diagonal matrix with the eigenvalues on the diagonal

D =

(
3 0
0 1/2

)
The matrix A contains the right eigenvectors as columns (in the same order as the
eigenvalues in D)

A =

(
1/10 11/10
9/10 −1/10

)
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Question 2 (30%) Here we analyze a model to understand how species compete for essential
nutrients (e.g., plants need certain inorganic nutrients to grow). Our approach follows Loreau
(2011).

Let R represent the available stock of an essential nutrient, which flows into the system at rate
I and is lost from the system at rate qR. Let N1 be the biomass of a plant species that requires this
nutrient. We assume the plants uptake the nutrient at a rate of a1RN1, of which e1 is converted
into new plant biomass. Plant biomass is lost at a rate of m1N1. The rate of change in the nutrient
stock and plant biomass is then

dR

dt
= I − qR− a1RN1

dN1

dt
= e1a1RN1 −m1N1.

(a) (10%) Find all equilibria of this model.

Solution

We start with the N1 equation, which implies that at equilibrium

0 =
dN1

dt
0 = e1a1RN1 −m1N1

0 = N1(e1a1R−m1)

so that either N1 = 0 or R = m1/(e1a1).

Taking N1 = 0 first, the R equation then says

0 =
dR

dt
0 = I − qR− a1RN1

0 = I − qR
R = I/q

This is one equilibrium, R̂ = I/q and N̂1 = 0.

Next taking R = m1/(e1a1), the R equation then says

0 =
dR

dt
0 = I − qR− a1RN1

0 = I − qm1/(e1a1)−m1N1/e1

N1 =
I − qm1/(e1a1)

m1/e1

N1 = Ie1/m1 − q/a1
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This is the other equilibrium, R̂ = m1/(e1a1) and N̂1 = Ie1/m1 − q/a1.

(b) (10%) Use the Jacobian to determine when the equilibrium with the plant present, N̂1 > 0,
is stable (assuming all parameters are positive). [Hint: look at the sign of the trace and
determinant.] We’ll call the value of R at this equilibrium the “R star” of species 1, R∗1.

Solution

The Jacobian is

J =

(
d
dR

dR
dt

d
dN1

dR
dt

d
dR

dN1

dt
d

dN1

dN1

dt

)

=

(
−q − a1N1 a1R
e1a1N1 e1a1R−m1

)

Evaluating at R = R̂ = m1/(e1a1) and N1 = N̂1 = Ie1/m1 − q/a1 gives

J1 =

(
−a1e1I/m1 −m1/e1

e1(Ie1a1/m1 − q) 0

)
We’ll determine stability with the Routh-Hurwitz conditions for a 2x2 matrix, which
requires a negative trace and positive determinant.

The trace of this matrix is −a1e1I/m1, which is always negative.

The determinant of this matrix is

Det(J1) = (−a1e1I/m1)0− (−m1/e1)e1(Ie1a1/m1 − q)
= Ie1a1 −m1q

So the equilibrium is stable when

0 < Det(J1)

0 < Ie1a1 −m1q

0 < Ie1/m1 − q/a1
0 < N̂1

i.e., it is stable when the equilibrium abundance of the plant is positive.

(c) (2%) Now consider a second plant species whose dynamics follow

dN2

dt
= e2a2RN2 −m2N2.

If it were the only plant species present, with N2 > 0, use this equation to get the equilibrium
value of the resource. We call this the “R star” of the second species, R∗2.
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Solution

Since N2 has the same dynamics as N1, we can just switch the subscripts from above, so
that the equilibrium with just N2 present is R̂ = m2/(e2a2) and N̂2 = Ie2/m2 − q/a2.

(d) (4%) Now to understand how competition for essential nutrients works, replace R with R∗1 in
the equation for dN2

dt . Dividing by N2 gives the growth rate of species 2 when it attempts to
establish in a habitat where only species 1 was present beforehand. Show that species 2 can
only establish when R∗2 < R∗1.

Solution

From above we have R∗1 = m1/(e1a1). Setting R = R∗1 in the equation for N2 gives

dN2

dt
= e2a2RN2 −m2N2

= e2a2
m1

e1a1
N2 −m2N2

Dividing by N2 gives the growth rate of species 2 when rare

1

N2

dN2

dt
= e2a2

m1

e1a1
−m2

Species 2 will only establish if it’s growth rate when rare is positive

0 <
1

N2

dN2

dt

0 < e2a2
m1

e1a1
−m2

m2

e2a2
<

m1

e1a1
R∗2 < R∗1

(e) (4%) What does it mean, biologically, that a species can only replace another when it has a
lower R∗?

Solution

It means that a species can only replace another if it can grow using less resources. In
this way, continual replacement will lead to the ”most efficient” (smallest R∗) species
excluding all others, and minimizing the amount of nutrient in the system.
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Question 3 (40%) Here we analyze a “Levene-type” model to understand how environmental
heterogeneity can produce genetic polymorphism. This treatment follows Doebeli (2011).

Imagine a species occupying two environments, which we’ll call patch 1 and patch 2. Each
generation, an individual with trait value x survives to reproductive age with probability w1(x) =

e−(x+d)
2/(2σ2) if it is in patch 1 or with probability w2(x) = e−(x−d)

2/(2σ2) if it is in patch 2. That
is, trait value x = −d maximizes survival in patch 1 and trait value x = d maximizes survival in
patch 2. The parameter d determines how different the two patches are while σ (assumed to be
positive) describes how quickly survival drops off as trait values deviate from those maximizing
survival (larger σ cause slower drop offs). Survivors produce offspring, asexually, of which cN from
patch 1 and (1− c)N from patch 2 are chosen to start the next generation (e.g., c, which is between
0 and 1, could be the quality of patch 1 relative to patch 2). We assume the total population size
across the two patches, N , is constant. The offspring then randomly disperse into the two habitat
patches to start the next generation.

Now imagine a population where individuals have either trait x or trait y. The frequency of y
in the next generation is then determined by the sum of the classic haploid selection recursion in
each patch, weighted by the contribution of each patch to the next generation,

q(t+ 1) = c
q(t)w1(y)

(1− q(t))w1(x) + q(t)w1(y)
+ (1− c) q(t)w2(y)

(1− q(t))w2(x) + q(t)w2(y)
.

Here we’ll do an evolutionary invasion analysis, assuming x is the resident trait value and y is
the trait value of a rare mutant. To find the invasion fitness of a rare mutant we take the derivative
of q(t+ 1) with respect to q(t) and evaluate at q(t) = 0, giving

λ(y, x) = c
w1(y)

w1(x)
+ (1− c)w2(y)

w2(x)
.

(a) (10%) Calculate the selection gradient, D(x) = ∂λ(y,x)
∂y

∣∣
y=x

, which describes the direction

of evolution from x. [Hint: using the chain rule, the derivative of f(x) = e−(x−a)
2/(2σ2) is

(−(x− a)/σ2)f(x).]

Solution
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D(x) =
∂λ(y, x)

∂y

∣∣∣
y=x

=
∂

∂y

(
c
w1(y)

w1(x)
+ (1− c)w2(y)

w2(x)

)
y=x

=
c

w1(x)

∂

∂y
(w1(y))y=x +

1− c
w2(x)

∂

∂y
(w2(y))y=x

=
c

w1(x)

(
(−(y − d)/σ2)w1(y)

)
y=x

+
1− c
w2(x)

(
(−(y + d)/σ2)w2(y)

)
y=x

=
c

w1(x)
(−(x− d)/σ2)w1(x) +

1− c
w2(x)

(−(x+ d)/σ2)w2(x)

= −c(x− d)/σ2 − (1− c)(x+ d)/σ2

= −c(x− d) + (1− c)(x+ d)

σ2

= −x− d(2c− 1)

σ2

(b) (4%) At a singular strategy, x̂, there is no directional selection. Show that x̂ = d(2c− 1) is a
singular strategy.

Solution

There is no directional selection when

0 =
∂λ(y, x)

∂y

∣∣∣
y=x

0 = −x− d(2c− 1)

σ2

0 = x− d(2c− 1)

x = d(2c− 1)

meaning that x̂ = d(2c− 1) is a singular strategy.

(c) (4%) Calculate dD(x)
dx

∣∣
x=x̂

, describing how the selection gradient changes with the resident
strategy near the singular point.

Solution
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dD(x)

dx

∣∣∣
x=x̂

=
d

dx

(
−x− d(2c− 1)

σ2

)
x=x̂

=

(
− 1

σ2

)
x=x̂

= − 1

σ2

(d) (2%) When is x̂ convergence stable? (Hint: use your answer in (c).)

Solution

The singular strategy x̂ is convergence stable when the selection gradient has a negative
slope at that point, which we see from above is always true.

(e) (10%) Calculate ∂2λ(y,x)
∂y2

∣∣
y=x̂,x=x̂

, describing the curvature of the fitness function when the

resident trait value is at the singular strategy.

Solution

∂2λ(y, x)

∂y2

∣∣∣
y=x̂,x=x̂

=
∂

∂y

(
∂λ(y, x)

∂y

)
y=x̂,x=x̂

=
∂

∂y

(
c

w1(x)
(−(y − d)/σ2)w1(y) +

1− c
w2(x)

(−(y + d)/σ2)w2(y)

)
y=x̂,x=x̂

=

(
c

w1(x)

(
−w1(y)

σ2
+

(
y + d

σ2

)2

w1(y)

)
+

1− c
w2(x)

(
−w2(y)

σ2
+

(
y − d
σ2

)2

w2(y)

))
y=x̂,x=x̂

= c

(
−1

σ2
+

(
x̂+ d

σ2

)2
)

+ (1− c)

(
−1

σ2
+

(
x̂− d
σ2

)2
)

=
−1

σ2
+ c

(
x̂+ d

σ2

)2

+ (1− c)
(
x̂− d
σ2

)2

=
−1

σ2
+ c

(
d(2c− 1) + d

σ2

)2

+ (1− c)
(
d(2c− 1)− d

σ2

)2

=
−1

σ2
+ c

(
2cd

σ2

)2

+ (1− c)
(

2d(c− 1)

σ2

)2

=
−1

σ2
+ c

(
2cd

σ2

)2

+ (1− c)
(

2d(c− 1)

σ2

)2

=
−1

σ2
+

(
2d

σ2

)2

(c3 + (1− c)3)
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(f) (4%) Assuming the two patches contribute equally, c = 0.5, show that x̂ is evolutionarily
unstable when σ < d. (Hint: use your answer in (e).)

Solution

x̂ is evolutionarily unstable when

0 <
∂2λ(y, x)

∂y2

∣∣∣
y=x̂,x=x̂

0 <
−1

σ2
+

(
2d

σ2

)2

(c3 + (1− c)3)

Plugging in c = 1/2

0 <
−1

σ2
+

(
2d

σ2

)2

((1/2)3 + (1/2)3)

0 <
−1

σ2
+

(
2d

σ2

)2

(1/2)2

0 <
−1

σ2
+

(
d

σ2

)2

1

σ2
<

(
d

σ2

)2

σ2 < d2

σ < d

(g) (4%) Give a biological interpretation for why we see evolutionary instability at x̂ when d is
large relative to σ (assuming c = 0.5). Note that x̂ = d(2c − 1) represents a strategy that is
a comprimise between the two patches.

Solution

Since x̂ = d(2c − 1) is a comprimise between the two patches, as the difference in the
optima between these two patches, d, grows, eventually the comprimise means that x̂
does poorly in both patches, and it is therefore better to specialize in one. This is all
relative to σ because σ determines how quickly fitness declines as the trait value moves
away from either optima.

(h) (2%) Given the parameter values are such that x̂ is convergent stable but not evolutionarily
stable, how does environmental heterogeneity affect genetic polymorphism?

Solution

When x̂ is convergent stable but not evolutionarily stable it means that x̂ is an evolution-
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ary branching point. I.e., when the two patches have very different optima, d > σ, this
environmental heterogeneity promotes genetic polymorphism (specialists in each patch).
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Question 4 (10%) Here we use probability theory derive a classic result in the coalescent model,
a model which describes how alleles sampled from present-day individuals have lineages that “coa-
lesce” into common ancestors as we look into the past.

(a) (2.5%) In a diploid population of constant size N , the probability the lineages of two sampled
alleles coalesce in the previous generation is the probability they have the same parent allele.
When we choose parent alleles at random this is 1/(2N). If the two sample lineages do not
coalesce in that generation the probability of them coalescing in the generation before that
is again 1/(2N), and so on. What is the name (or equation) of the probability distribution
that most accurately describes the number of generations until the two lineages coalesce,
Pr(T = t)?

Solution

Each generation there is a Bernoulli trial with probability p = 1/(2N) that determines
if the two lineages coalesce. We want to know how many generations until the first
coalescence, T . This describes a geometric distribution, Pr(T = t) = (1− p)t−1p.

(b) (2.5%) Given it takes T = t generations until the two lineages coalesce, there will be a branch
of length t leading from each sampled allele to their most recent common ancestor. That means
the two sampled alleles are separated by 2t generations. Given mutations – all of which are
unique – occur continuously at a rate of µ per generation, what is the name (or equation)
of the probability distribution that most accurately describes the number of mutations that
occur in 2t generations, P (M = m|2t)?

Solution

A Poisson distribution describes the number of events that occur in a given amount of
time when those events occur at a constant rate. The Poisson has just one parameter,
the mean, which in this case is 2tµ, the expected number of mutations differentiating the
two sampled alleles when they are seperated by 2t generations.

(c) (2.5%) Use the law of total expectation to write the expected number of mutations, E(M),
as a sum of conditional expectations, where the conditioning is the time until coalescence,
E(M |T = t).

Solution

We sum over all the potential coalescence times, weighting by the probability of each

E[M ] =

t=∞∑
t=0

E(M |T = t) Pr(T = t)

(d) (2.5%) We find that the answer to (c) can be written E(M) = 2µE(T ). Based on your answer
in (a), what is E(T )? You now have the expected number of mutational differences between
two randomly sampled alleles!
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Solution

From (a) we know that T is geometrically distributed with parameter p = 1/(2N). Since
the expectation of a geometric distribution is 1/p we have E(T ) = 2N . This then gives
E(M) = 4Nµ.
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