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Question 1 (40%) Roughly 99.9% of eukaryote species reproduce sexually at least some of the
time. Why this is remains a bit of a conundrum (Otto 2009). Here we examine a model of one
hypothesis.

Let the number of sexual species be S and the number of asexual species be A. Let sexual
species go extinct at rate d and asexual species go extinct at an elevated rate d+ δ. Assume both
types of species speciate at rate b. Let sexual species produce asexual species at rate µ (and assume
that this does not affect the number of sexual species). A flow diagram for this model is drawn
below.

sexual, S asexual, A
µS

bS

dS

bA

(d+ δ)A

(a) (8%) Write down the differential equations for the change in S and A over time.

Solution

We add the arrows coming in and subtract the (solid) arrows going out of each node,
giving

dS

dt
= bS − dS

dA

dt
= bA− (d+ δ)A+ µS

(b) (4%) We can write this system of equations in matrix form, d~x
dt = M~x, with ~x =

(
S
A

)
. Write

out the matrix M.

Solution

M =

(
b− d 0
µ b− d− δ

)

(c) (8%) Calculate the eigenvalues of M.
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Solution

Because this is a lower triangular matrix the eigenvalues are just the diagonal el‘ements,
λ1 = b− d and λ2 = b− d− δ.

(d) (4%) Given that all parameters are positive, what is the leading eigenvalue?

Solution

If δ > 0 then b− d > b− d− δ, so λ1 = b− d is the leading eigenvalue.

(e) (8%) Calculate the right eigenvector associated with the leading eigenvalue.

Solution

The right eigenvector, ~u1 =

(
u1
u2

)
, associated with eigenvalue λ1 solves

M~u1 = λ1~u1

Writing this out as a system of equations

(b− d)u1 = (b− d)u1

µu1 + (b− d− δ)u2 = (b− d)u2

The first equation doesn’t tell us anything. The second equation can be rearranged

µu1 + (b− d− δ)u2 = (b− d)u2

µu1 = (b− d)u2 − (b− d− δ)u2

µu1 = δu2
µ

δ
u1 = u2

We are free to choose one element and pick u1 = 1. Then u2 = µ/δ. The right eigenvector
is then

~u1 =

(
1
µ
δ

)
‘

(f) (4%) Show that the fraction of species expected to be sexual in the long-term under this
model is δ

δ+µ .

Solution

The right eigenvalue associated with the leading eigenvalue gives the relative abundances
of the variables in the long term. To convert these relative abundances into fractions
we need them to sum to one, which we can do by dividing both elements by their sum,
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1 + µ/δ = (δ + µ)/δ. This gives

~u1 =

(
δ

δ+µ
µ
δ+µ

)
so that the fraction of sexual species in the long term is δ

δ+µ .

(g) (4%) Given the fraction of sexual species is p, what value of δ is needed under this model?
Assuming we estimated µ = 0.001 per million years, by how much does the extinction rate of
asexual species need to be elevated above that of sexual species to account for the fact that
99.9% of species are sexual?

Solution

We want to set the long-term frequency δ
δ+µ equal to p and solve for δ

p =
δ

δ + µ

p(δ + µ) = δ

µp = δ(1 − p)
µp

1 − p
= δ

And if we take µ = 0.001 and p = 0.999 we get δ = 0.999 ≈ 1. I.e., the extinction rate of
asexuals needs to be elevated by roughly 1 per million years.

3



Question 2 (40%) In lecture we focused on species interactions with only two species, e.g., com-
petition and predation. These models have been extended to consider more complex communities
and ecosystems.

Consider a simple ecosystem composed of a resource, a plant species, and a herbivore (Grover
& Holt 1998). Let the density of resources be R, the density of plants be P , and the density of
herbivores be H. Assume that resources continually arrive from elsewhere at rate DS. Let plants
uptake reources at rate uPR and die at rate (D+e)P , where eP is recycled back into resources but
DP is lost from the system. Let herbivores consume plants at rate vPH and die at rate (D+ d)H,
where only dH is recycled. The differential equations describing this system are

dR

dt
= DS − uPR+ eP + dH

dP

dt
= uPR− (D + e)P − vPH

dH

dt
= vPH − (D + d)H

Assume all parameters are positive.

(a) (12%) Solve for the two equilibria of this model.

Solution

One of the easiest place to start is with the differential equation for H, since we can
immediately see that dH

dt = 0 implies either that H = 0 or, after factoring out H, that
P = (D + d)/v.

Let’s first look at the case where H = 0. Setting the differential equation for P equal
to zero and plugging in H = 0 implies that P = 0 or, after factoring out P , that
R = (D + e)/u.

Now note that if both H = 0 and P = 0 then dR
dt cannot be zero, which means that there

is no equilibrium with both H = 0 and P = 0.

If H = 0 and R = (D + e)/u then the resource equation tells us

0 = DS − uPR+ eP + dH

0 = DS − P (D + e) + eP

0 = DS −DP

P = S

Thus one equilibrium is R̂ = (D + e)/u, P̂ = S, and Ĥ = 0.

Now let’s consider the case where the herbivore equation tells us that P = (D + d)/v.
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Setting the plant equation to zero and factoring out P , we know

0 = uPR− (D + e)P − vPH

0 = uR− (D + e) − vH

H = uR/v − (D + e)/v

Now plugging this and P = (D + d)/v into the resource equation and setting to zero we
get

0 = DS − uPR+ eP + dH

0 = DS − uR(D + d)/v + e(D + d)/v + d(uR/v − (D + e)/v)

R(u(D + d)/v − du/v) = DS + e(D + d)/v − d(D + e)/v

R(uD/v) = DS + eD/v − dD/v

Ru = Sv + e− d

R = (Sv + e− d)/u

Finally, we plug this into H = uR/v − (D + e)/v to complete the second equilibrium:
R̂ = D(Sv + e− d)/u, P̂ = (D + d)/v, and Ĥ = (Sv − d−D)/v.

(b) (8%) Calculate the Jacobian for this system.

Solution

The Jacobian is

J =

 d
dR

dR
dt

d
dP

dR
dt

d
dH

dR
dt

d
dR

dP
dt

d
dP

dP
dt

d
dH

dP
dt

d
dR

dH
dt

d
dP

dH
dt

d
dH

dH
dt


=

−uP −uR+ e d
uP uR− (D + e) − vH −vP
0 vH vP − (D + d)


(c) (4%) Show that the Jacobian evaluated at the herbivore-less equilibrium (R̂ = (D + e)/u,

P̂ = S, and Ĥ = 0) is

J0 =

−uS −D d
uS 0 −vS
0 0 vS − (D + d)


Solution

Plugging R = R̂ = (D + e)/u, P = P̂ = S, and H = Ĥ = 0 in to the Jacobian above
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gives

J0 =

−uS −D d
uS 0 −vS
0 0 vS − (D + d)



(d) (8%) This matrix, J0, is block triangular with matrices A =

(
−uS −D
uS 0

)
and B =

(
vS − (D + d)

)
along the diagonal. The eigenvalues of J0 are therefore the eigenvalues of these two matrices,
A and B. It turns out that A determines stability in the complete absence of the herbivore.
Use the Routh-Hurwitz stability conditions for a 2x2 matrix (positive determinant and nega-
tive trace) to show that this herbivore-less equilibrium is always stable in the absence of the
herbivore.

Solution

To use the Routh-Hurwitz conditions we need to calculate the determinant and trace,
which are

Det(A) = (−uS)(0) − (−D)(uS) = DuS

and
Tr(A) = −uS + 0 = −uS

Given that all parameters are positive we then know that the Routh-Hurwitz stability
conditions, Det(A) > 0 and Tr(A) < 0, are always satisfied.

(e) (4%) The remaining eigenvalue is vS−(D+d), which determines the stability of the herbivore-
less equilibrium when a few herbivores are introduced. What conditions on the parameters are
required for instability of the herbivore-less equilibrium, i.e., for the herbivore to invade?

Solution

In continuous-time models instability requires the eigenvalues to be positive, so here we
need vS− (D+d) or vS > D+d for the herbivore to invade. (Note that this is the same
as the condition for biological vailidity of the herbivore equilibrium density, Ĥ > 0.)

(f) (4%) It is perhaps surprising that the equilibrium density of the resource, R̂, declines with
the death rate of the herbivore, d, at the equilibrium with the herbivore present (R̂ = D(Sv+
e − d)/u, P̂ = (D + d)/v, and Ĥ = (Sv − d − D)/v), despite the fact that this death
represents an inflow of resources via nutrient recycling. Explain in words why this makes
sense biologically.

Solution

The density of resource declines with the death rate of the herbivore because a larger
death rate means less herbivore, which in turn means more plants, which in turn means
more resources. This is called a trophic cascade.

6



Question 3 (20%) In lecture we added stochasticity to the discrete-time exponential growth
model, nt+1 = Rnt, by assuming that the reproductive factor of each individual, Ri, was an
independent Poisson random variable with mean λ, Ri ∼ Poi(λ). This is called demographic
stochasticity since it results from randomness inherent in demography (birth and death). Given
the current number of individuals, nt, this model gives E(nt+1) = Var(nt+1) = λnt.

Another source of stochasticity comes from the environment – environmental stochasticity. We
can model this by assuming that in good time steps every individual has reproductive factorRg while
in bad time steps every individual has reproductive factor Rb, and assuming that the probability
that a time step is a good time step, R = Rg, is p.

(a) (4%) Calculate the expected number of individuals in the next time step, E(nt+1), given nt
in the current time step under this model of environmental stochasticity.

Solution

E(nt+1) = E(Rnt)

= E(R)nt

= (Pr(R = Rg)Rg + Pr(R = Rb)Rb)nt

= (pRg + (1 − p)Rb)nt

(b) (8%) Calculate the variance in the number of individuals in the next time step, Var(nt+1),
given nt in the current time step under this model of environmental stochasticity.

Solution

We first calculate

E(n2t+1) = E((Rnt)
2)

= E(R2)n2t

= (Pr(R = Rg)R
2
g + Pr(R = Rb)R

2
b)n

2
t

= (pR2
g + (1 − p)R2

b)n
2
t

and use this and the expectation calculated above to give

Var(nt+1) = E(n2t+1) − E(nt+1)2

= (pR2
g + (1 − p)R2

b)n
2
t − (pRg + (1 − p)Rb)

2n2t

= (pR2
g + (1 − p)R2

b)n
2
t − (p2R2

g + 2p(1 − p)RgRb + (1 − p)2R2
b)n

2
t

= (p(1 − p)R2
g + p(1 − p)R2

b − 2p(1 − p)RgRb)n
2
t

= p(1 − p)(R2
g +R2

b − 2RgRb)n
2
t

= p(1 − p)(Rg −Rb)n
2
t

(c) (4%) Explain in words why this model of environmental stochasticity can produce more vari-
ance in the number of individuals in the next time step, as compared to our model of demo-
graphic stochasticity, even when it produces the same expected number of individuals in the
next time step.
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Solution

The key here is that under demographic stochasticity the reproductive factor of each in-
dividual is independent of all others. Under environmental stochasticity every individual
has the same reproductive factor. Holding the expected reproductive factor constant, en-
vironmental stochasticity can therefore produce “boom” and “bust” time steps, leading
to higher variance.

(d) (4%) To get a better sense of this model we run the following code in Python.

import numpy as np

import matplotlib.pyplot as plt

def enviro_stoch(Rg ,Rb,p,n0 ,tmax=100):

n = n0

t = 0

ns = []

while t < tmax:

ns.append(n)

X = np.random.binomial(1,p) #1 with probability p, else 0

if X == 1:

R = Rg

else:

R = Rb

n = R*n

t = t+1

return ns

fig , ax = plt.subplots ()

for i in range(10):

ns = enviro_stoch(Rg=1.2,Rb=0.9,p=0.5,n0=10)

ax.plot(ns)

plt.show()

What is it that we have plotted?

Solution

We have plotted 10 replicates of the environmental stochasticity simulation (number of
individuals over time) with the same parameters.
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