
Question 1 (10/30) Chris Carlson is studying the effect of mutualism on adaptation to a changing
environment. For concreteness, consider a population of plants and a population of pollinators in
a warming world. We assume each individual has a trait value that affects both its ability to cope
with temperature and the benefit it receives from mutualism. The optimum trait value for coping
with temperature increases linearly with time, at rate cx for plants and rate cy for pollinators, and
each species evolves in response to deviations from the optimum, at rate ax for plants and rate
ay for pollinators. An individual receives the most benefit from mutualism when its trait value
is d units bigger than its partners trait value and evolutionary responses to deviations from this
maximum benefit occur at rates bx for plants and rate by for pollinators. We can approximate
the dynamics of the mean lag behind the optimal trait value for coping with temperature for each
species, x and y, with the following two differential equations,

dx

dt
= cx − axx− bx(d− (x− y))

dy

dt
= cy − ayy − by(d− (y − x)).

For clarity, we assume all parameters are positive.

(a) (2/30) The pair of differential equations can be written in matrix form,[
dx
dt
dy
dt

]
= M

[
x
y

]
+ ~m,

where M and ~m are composed entirely of parameters. Determine the entries of M and ~m.

(b) (4/30) Find the equilibrium values of x and y, x̂ and ŷ. If you like, you can check that the
difference between them is

x̂− ŷ =
(axby − aybx)d− axcy + aycx

axay − axby − aybx
.

(c) (2/30) As in the univariate case, we can define the deviations of x and y from their equilibrium
values, δx = x− x̂ and δy = y − ŷ, and write a simpler equation for their dynamics,[dδx

dt
dδy
dt

]
= M

[
δx
δy

]
,

where M is the same as in the previous question (you may also recognize M as the Jacobian!).
Use the Routh-Hurwitz criteria (conditions on the determinant and trace) to determine what
needs to be true about the parameter values for the equilibrium to be stable.

(d) (2/30) This is a linear system of equations and so we can write out the general solution for

the deviations from equilibrium, ~δ(t) =

[
δx(t)
δy(t)

]
, as ~δ(t) = AeDtA−1~δ(0). Unfortunately the

eigenvalues and eigenvectors are a little complicated, but given I told you the eigenvalues of

M were λ1 and λ2 and their respective right eigenvectors were

[
u11
u21

]
and

[
u12
u22

]
, write out

the entries of A and D.
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Question 2 (10/30) Sometimes selection acts differently on females and males. Because females
and males share much of the same genome (besides some potential sex chromosomes), this can lead
to evolutionary conflict between the sexes, which is called sexual antagonism. Here we look at a
classic population genetic model of sexual antagonism (Kidwell et al., 1977). To model this we need
to keep track of the allele frequency in both females and males. We consider two alleles, A and a,
and let pf and pm be the frequency of A in females and males, respectively. Let the fitnesses of
AA, Aa, and aa genotypes in females be fAA, fAa, and faa, with 0 < fi for all i. Let the fitnesses
of AA, Aa, and aa genotypes in males be mAA, mAa, and maa, with 0 < mi for all i. The allele
frequency dynamics are then described by the following two recursion equations,

pf (t+ 1) =
fAApf (t)pm(t) + fAa[pf (t)(1− pm(t)) + (1− pf (t))pm(t)]/2

F (t)

pm(t+ 1) =
mAApf (t)pm(t) +mAa[pf (t)(1− pm(t)) + (1− pf (t))pm(t)]/2

M(t)
,

where the mean fitnesses in females and males are

F (t) = fAApf (t)pm(t) + fAa[pf (t)(1− pm(t)) + (1− pf (t))pm(t)] + faa(1− pf (t))(1− pm(t))

M(t) = mAApf (t)pm(t) +mAa[pf (t)(1− pm(t)) + (1− pf (t))pm(t)] +maa(1− pf (t))(1− pm(t)).

(a) (2/30) Verify that both p̂f = p̂m = 0 and p̂f = p̂m = 1 are equilibria. We call these boundary
equilibria, which represent the loss and fixation of the A allele, respectively.

(b) (3/30) There is a third equilibrium where both alleles may be present (i.e., polymorphic). We
can determine the stability of this equilibrium by determining when both of the boundary
equilibria are unstable. Deriving and factoring the Jacobian takes a little work, but in the
end the Jacobian evaluated at each of the boundary equilibria reduces to

J|pm=pf=0 =

[
mAa

2maa

mAa

2maa
fAa

2faa

fAa

2faa

]

J|pm=pf=1 =

[
mAa

2mAA

mAa

2mAA
fAa

2fAA

fAa

2fAA

]
.

Show that the leading eigenvalue of J|pm=pf=0 is λA = fAa/faa+mAa/maa

2 . By symmetry the

leading eigenvalue of J|pm=pf=1 is λa = fAa/fAA+mAa/mAA

2 .

(c) (2/30) Describe in a sentence or two what λA represents, biologically.

(d) (2/30) To model a conflict between the sexes we assume the a allele is favoured in females
(fAA = 1 − sf , fAa = 1 − hfsf , faa = 1, with 0 < sf < 1 and 0 < hf < 1) but the A
allele is favoured in males (mAA = 1, mAa = 1 − hmsm, maa = 1 − sm, with 0 < sm < 1
and 0 < hm < 1). The expressions for λA and λa get a little more complicated with this
parameterization, but under the special case of hf +hm = 1 we have both λA > 1 and λa > 1
when

sf
1 + sf

< sm <
sf

1− sf
.

Describe in a sentence or two why, biologically, stability of the polymorphic equilibrium
restricts sm (or, equivalently, sf ) to an intermediate value.
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(e) (1/30) Below we plot the nullclines for two sets of parameter values. In one sentence, state
which plot (left or right) has a biologically valid polymorphic equilibrium and why.
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Question 3 (10/30) Competition for resources is often asymmetric in the sense that individuals
with larger traits (eg, body size) have a competitive advantage. Here we’ll look at the evolutionary
consequences of this asymmetry following a model of Matsuda & Abrams (1994).

(a) (2/30) We start by considering a resident population, where all individuals have trait value
x. Let the dynamics of the number of residents, n, be described by logistic growth,

dn

dt
= rn

(
1− n

K(x)

)
,

where r > 0 is the intrinsic growth rate and K(x) > 0 is the carrying capacity of a population
composed entirely of individuals with trait value x. Show that the only non-zero equilibrium
is n̂ = K(x).

(b) (2/30) Now consider a mutant population with trait value xm. Let the number of mutants
change according to

dnm
dt

= rnm

(
1− nm + α(xm, x)n

K(xm)

)
,

where α(xm, x) describes the strength of competition that individuals with trait value x exert
on individuals with trait value xm. Use this equation to show that invasion fitness (the
growth rate of a rare mutant into a population of residents at equilibrium) is λ(xm, x) =
r(1− α(xm, x)K(x)/K(xm)).

(c) (4/30) To be more concrete, let’s choose some specific functions for carrying capacity and
competition,

K(x) = K0 exp

(
− log(x/x0)2

2w2

)
α(xm, x) = exp

(
−(xm − x)β − (xm − x)2

4σ2

)
.

We now restrict to positive trait values, x > 0, e.g., body size. In the first equation, K0 > 0 is
the maximum carrying capacity, achieved when a population has trait x0 > 0, and w describes
how quickly carrying capacity declines as x departs from x0. In the second equation, β > 0
describes the strength of competitive asymmetry in favour of larger x and σ describes how
quickly the symmetric aspect of competition declines with differences in trait value, xm − x.

Given that ∂α(xm,x)
∂xm

∣∣∣
xm=x

= −β and dK(xm)
dxm

∣∣∣
xm=x

= − log(x/x0)
w2x K(x), use the invasion fitness

to show that the selection gradient is D(x) = r
(
β − log(x/x0)

w2x

)
.

(d) (2/30) Because log(x/x0)
w2x has a maximum value of 1/(w2x0e), where e is the base of the natural

logarithms, if the strength of asymmetric competition is large enough, β > 1/(w2x0e), the
selection gradient is always positive, D(x) > 0. In a sentence, describe what this means for the
evolution of x in the long run. In another sentence, describe what this means for equilibrium
population size, K(x), in the long run.
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