
Question 1 (10/30) Chris Carlson is studying the effect of mutualism on adaptation to a changing
environment. For concreteness, consider a population of plants and a population of pollinators in
a warming world. We assume each individual has a trait value that affects both its ability to cope
with temperature and the benefit it receives from mutualism. The optimum trait value for coping
with temperature increases linearly with time, at rate cx for plants and rate cy for pollinators, and
each species evolves in response to deviations from the optimum, at rate ax for plants and rate
ay for pollinators. An individual receives the most benefit from mutualism when its trait value
is d units bigger than its partners trait value and evolutionary responses to deviations from this
maximum benefit occur at rates bx for plants and rate by for pollinators. We can approximate
the dynamics of the mean lag behind the optimal trait value for coping with temperature for each
species, x and y, with the following two differential equations,

dx

dt
= cx − axx− bx(d− (x− y))

dy

dt
= cy − ayy − by(d− (y − x)).

For clarity, we assume all parameters are positive.

(a) (2/30) The pair of differential equations can be written in matrix form,[
dx
dt
dy
dt

]
= M

[
x
y

]
+ ~m,

where M and ~m are composed entirely of parameters. Determine the entries of M and ~m.

Solution

It’s perhaps easiest to start by grouping together the x and y terms

dx

dt
= (bx − ax)x− bxy + cx − bxd

dy

dt
= −byx+ (by − ay)y + cy − byd.

We then use the coefficients of x and y to build the matrix,

M =

[
bx − ax −bx
−by by − ay

]
,

and put the constants in the vector,

~m =

[
cx − bxd
cy − byd

]
.

(b) (4/30) Find the equilibrium values of x and y, x̂ and ŷ. If you like, you can check that the
difference between them is

x̂− ŷ =
(axby − aybx)d− axcy + aycx

axay − axby − aybx
.
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Solution

This could be done by setting each differential equation to zero and solving for one
variable at a time, but now that we have the pair of equations in matrix form we may
as well solve for both variables at once. The equilibrium is found by setting the rate of
change to zero and solving for our vector of variables,[

dx
dt
dy
dt

]
= 0

M

[
x̂
ŷ

]
+ ~m = 0

M

[
x̂
ŷ

]
+ ~m = 0

M

[
x̂
ŷ

]
= −~m[

x̂
ŷ

]
= −M−1 ~m[

x̂
ŷ

]
= − 1

|M|

[
by − ay bx
by bx − ax

] [
cx − bxd
cy − byd

]
[
x̂
ŷ

]
= − 1

(bx − ax)(by − ay)− bxby

[
(by − ay)(cx − bxd) + bx(cy − byd)
by(cx − bxd) + (bx − ax)(cy − byd)

]
[
x̂
ŷ

]
= − 1

axay − axby − aybx

[
(by − ay)(cx − bxd) + bx(cy − byd)
by(cx − bxd) + (bx − ax)(cy − byd)

]
[
x̂
ŷ

]
=

[
(by−ay)(bxd−cx)+bx(byd−cy)

axay−axby−aybx
by(bxd−cy)+(bx−ax)(byd−cy)

axay−axby−aybx

]

(c) (2/30) As in the univariate case, we can define the deviations of x and y from their equilibrium
values, δx = x− x̂ and δy = y − ŷ, and write a simpler equation for their dynamics,[dδx

dt
dδy
dt

]
= M

[
δx
δy

]
,

where M is the same as in the previous question (you may also recognize M as the Jacobian!).
Use the Routh-Hurwitz criteria (conditions on the determinant and trace) to determine what
needs to be true about the parameter values for the equilibrium to be stable.

Solution

The Routh-Hurwitz criteria for a 2x2 matrix in continuous time are a positive determi-
nant, 0 < |M|, and a negative trace, Tr(M) < 0. Starting with the determinant, which
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we already calculated in the previous question,

0 < |M|
0 < axay − axby − aybx

axby + aybx < axay.

For the trace we need
Tr(M) < 0

(bx − ax) + (by − ay) < 0

bx + by < ax + ay.

(d) (2/30) This is a linear system of equations and so we can write out the general solution for

the deviations from equilibrium, ~δ(t) =

[
δx(t)
δy(t)

]
, as ~δ(t) = AeDtA−1~δ(0). Unfortunately the

eigenvalues and eigenvectors are a little complicated, but given I told you the eigenvalues of

M were λ1 and λ2 and their respective right eigenvectors were

[
u11
u21

]
and

[
u12
u22

]
, write out

the entries of A and D.

Solution

The columns of A are the right eigenvectors,

A =

[
u11 u12
u21 u22

]
,

and the diagonal elements of D are the respective eigenvalues,

D =

[
λ1 0
0 λ2

]
.
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Question 2 (10/30) Sometimes selection acts differently on females and males. Because females
and males share much of the same genome (besides some potential sex chromosomes), this can lead
to evolutionary conflict between the sexes, which is called sexual antagonism. Here we look at a
classic population genetic model of sexual antagonism (Kidwell et al., 1977). To model this we need
to keep track of the allele frequency in both females and males. We consider two alleles, A and a,
and let pf and pm be the frequency of A in females and males, respectively. Let the fitnesses of
AA, Aa, and aa genotypes in females be fAA, fAa, and faa, with 0 < fi for all i. Let the fitnesses
of AA, Aa, and aa genotypes in males be mAA, mAa, and maa, with 0 < mi for all i. The allele
frequency dynamics are then described by the following two recursion equations,

pf (t+ 1) =
fAApf (t)pm(t) + fAa[pf (t)(1− pm(t)) + (1− pf (t))pm(t)]/2

F (t)

pm(t+ 1) =
mAApf (t)pm(t) +mAa[pf (t)(1− pm(t)) + (1− pf (t))pm(t)]/2

M(t)
,

where the mean fitnesses in females and males are

F (t) = fAApf (t)pm(t) + fAa[pf (t)(1− pm(t)) + (1− pf (t))pm(t)] + faa(1− pf (t))(1− pm(t))

M(t) = mAApf (t)pm(t) +mAa[pf (t)(1− pm(t)) + (1− pf (t))pm(t)] +maa(1− pf (t))(1− pm(t)).

(a) (2/30) Verify that both p̂f = p̂m = 0 and p̂f = p̂m = 1 are equilibria. We call these boundary
equilibria, which represent the loss and fixation of the A allele, respectively.

Solution

Setting pf (t) = pm(t) = 0 in the recursions gives pf (t+ 1) = 0/F (t) = 0 and pm(t+ 1) =
0/M(t) = 0, verifying that p̂f = p̂m = 0 is an equilibrium.

Similarly, setting pf (t) = pm(t) = 1 in the recursions gives pf (t + 1) = fAA/F (t) =
fAA/fAA = 1 and pm(t+ 1) = mAA/M(t) = mAA/mAA = 1, verifying that p̂f = p̂m = 1
is also an equilibrium.

(b) (3/30) There is a third equilibrium where both alleles may be present (i.e., polymorphic). We
can determine the stability of this equilibrium by determining when both of the boundary
equilibria are unstable. Deriving and factoring the Jacobian takes a little work, but in the
end the Jacobian evaluated at each of the boundary equilibria reduces to

J|pm=pf=0 =

[
mAa

2maa

mAa

2maa
fAa

2faa

fAa

2faa

]

J|pm=pf=1 =

[
mAa

2mAA

mAa

2mAA
fAa

2fAA

fAa

2fAA

]
.

Show that the leading eigenvalue of J|pm=pf=0 is λA = fAa/faa+mAa/maa

2 . By symmetry the

leading eigenvalue of J|pm=pf=1 is λa = fAa/fAA+mAa/mAA

2 .

4



Solution

For a 2x2 matrix we know the eigenvalues solve

0 = λ2 − Tr(J|pm=pf=0)λ+ |J|pm=pf=0|.

Here we have |J|pm=pf=0| = 0, so that

0 = λ2 − Tr(J|pm=pf=0)λ

0 = λ(λ− Tr(J|pm=pf=0)).

This means the two eigenvalues are λ = 0 and λ = Tr(J|pm=pf=0) = fAa/faa+mAa/maa

2 .

(c) (2/30) Describe in a sentence or two what λA represents, biologically.

Solution

The two terms in the numerator of λA are the reproductive factor of a rare A allele
in females, fAa/faa, and the reproductive factor of a rare A allele in males, mAa/maa.
Therefore λA is the reproductive factor of a rare A allele, averaged over the sexes.

(d) (2/30) To model a conflict between the sexes we assume the a allele is favoured in females
(fAA = 1 − sf , fAa = 1 − hfsf , faa = 1, with 0 < sf < 1 and 0 < hf < 1) but the A
allele is favoured in males (mAA = 1, mAa = 1 − hmsm, maa = 1 − sm, with 0 < sm < 1
and 0 < hm < 1). The expressions for λA and λa get a little more complicated with this
parameterization, but under the special case of hf +hm = 1 we have both λA > 1 and λa > 1
when

sf
1 + sf

< sm <
sf

1− sf
.

Describe in a sentence or two why, biologically, stability of the polymorphic equilibrium
restricts sm (or, equivalently, sf ) to an intermediate value.

Solution

If sm is too small relative to sf then the allele best in females (a) will fix and if sm is
too large relative to sf then the allele best in males (A) will fix. An intermediate value
of sm is needed to maintain both alleles, a comprimise between the sexes.

(e) (1/30) Below we plot the nullclines for two sets of parameter values. In one sentence, state
which plot (left or right) has a biologically valid polymorphic equilibrium and why.
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Solution

The plot on the right has a biologically valid polymorphic equilibrium because the null-
clines of the two variables cross where both pm and pf are between 0 and 1.
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Question 3 (10/30) Competition for resources is often asymmetric in the sense that individuals
with larger traits (eg, body size) have a competitive advantage. Here we’ll look at the evolutionary
consequences of this asymmetry following a model of Matsuda & Abrams (1994).

(a) (2/30) We start by considering a resident population, where all individuals have trait value
x. Let the dynamics of the number of residents, n, be described by logistic growth,

dn

dt
= rn

(
1− n

K(x)

)
,

where r > 0 is the intrinsic growth rate and K(x) > 0 is the carrying capacity of a population
composed entirely of individuals with trait value x. Show that the only non-zero equilibrium
is n̂ = K(x).

Solution

We set the differential equation to zero and solve for n̂,

0 = rn̂

(
1− n̂

K(x)

)
,

so that n̂ = 0 or, dividing both sides by n̂,

0 = r

(
1− n̂

K(x)

)
0 = 1− n̂

K(x)

n̂

K(x)
= 1

n̂ = K(x).

(b) (2/30) Now consider a mutant population with trait value xm. Let the number of mutants
change according to

dnm
dt

= rnm

(
1− nm + α(xm, x)n

K(xm)

)
,

where α(xm, x) describes the strength of competition that individuals with trait value x exert
on individuals with trait value xm. Use this equation to show that invasion fitness (the
growth rate of a rare mutant into a population of residents at equilibrium) is λ(xm, x) =
r(1− α(xm, x)K(x)/K(xm)).

Solution

Dividing dnm

dt by nm gives the growth rate of a mutant,

dnm
nmdt

= r

(
1− nm + α(xm, x)n

K(xm)

)
.
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When mutants are rare, nm = 0, and the resident is at equilibrium, n = K(x), we have

dnm
nmdt

= r

(
1− α(xm, x)K(x)

K(xm)

)
,

which we define as our invasion fitness, λ(xm, x). The same result could be found from
the bottom right entry of the Jacobian of dn

dt and dnm

dt evaluated at nm = 0 and n = K(x),

∂

∂nm

dnm
dt

∣∣∣∣
nm=0,n=K(x)

= r

(
1− α(xm, x)K(x)

K(xm)

)
.

(c) (4/30) To be more concrete, let’s choose some specific functions for carrying capacity and
competition,

K(x) = K0 exp

(
− log(x/x0)2

2w2

)
α(xm, x) = exp

(
−(xm − x)β − (xm − x)2

4σ2

)
.

We now restrict to positive trait values, x > 0, e.g., body size. In the first equation, K0 > 0 is
the maximum carrying capacity, achieved when a population has trait x0 > 0, and w describes
how quickly carrying capacity declines as x departs from x0. In the second equation, β > 0
describes the strength of competitive asymmetry in favour of larger x and σ describes how
quickly the symmetric aspect of competition declines with differences in trait value, xm − x.

Given that ∂α(xm,x)
∂xm

∣∣∣
xm=x

= −β and dK(xm)
dxm

∣∣∣
xm=x

= − log(x/x0)
w2x K(x), use the invasion fitness

to show that the selection gradient is D(x) = r
(
β − log(x/x0)

w2x

)
.

Solution

The selection gradient is the slope of invasion fitness with respect to mutant trait value
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evaluated at the resident trait value,

D(x) =
∂λ(xm, x)

∂xm

∣∣∣∣
xm=x

=
∂

∂xm

(
r

(
1− α(xm, x)K(x)

K(xm)

))
xm=x

= −rK(x)
∂

∂xm

(
α(xm, x)

K(xm)

)
xm=x

= −rK(x)

∂α(xm,x)
∂xm

K(xm)− α(xm, x)dK(xm)
dxm

K(xm)2

∣∣∣∣∣
xm=x

= −rK(x)
−βK(x)− α(x, x)− log(x/x0)

w2x K(x)

K(x)2

= r

(
β − log(x/x0)

w2x

)
.

(d) (2/30) Because log(x/x0)
w2x has a maximum value of 1/(w2x0e), where e is the base of the natural

logarithms, if the strength of asymmetric competition is large enough, β > 1/(w2x0e), the
selection gradient is always positive, D(x) > 0. In a sentence, describe what this means for the
evolution of x in the long run. In another sentence, describe what this means for equilibrium
population size, K(x), in the long run.

Solution

Since the sign of the selection gradient determines the direction of evolution, if the
selection gradient is always positive the trait will always increase, approaching infinity.
As the trait, x, approaches infinity the equilibrium population size, K(x), approaches
zero, meaning that evolution drives the population extinct.
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