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Question 1 [ 4/23 points ] Below is a flow diagram describing the rate of change in
the number of individuals who are susceptible to and infected with a pesky virus named
2-VoC-SRAS.
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a. [ 1 points ] Explain how a hypothetical new more contagious variant of the virus
would affect the parameters.

Answer

If the new variant is more contagious then it would increase the rate of trans-
mission, β.

b. [ 3 points ] Imagine a vaccine is invented that reduces (but does not eliminate)
the chance of being infected. Assume that the effect of the vaccine wears off with
time and that recovering from infection does not provide protection from future
infection. Add a new variable to the flow diagram above to represent this and label
the arrows (including new parameters). Describe in words what each added arrow
represents.

Answer

• Draw a new node, V , for vaccinated individuals.

• Let susceptibles get vaccinated at some rate, e.g., aS (could be more com-
plicated, e.g., peer-pressure).

• Let vaccinateds die at some rate, e.g., dV (same per capita rate as suscep-
tibles).

• Let vaccinateds become infected at some rate, e.g., bIV (b < β, i.e., the
vaccine reduces transmission).

• Let vaccinateds become susceptible at some rate, e.g., θV (this models the
vaccine effectiveness wearing off).

• Let infecteds get vaccinated at some rate, e.g., bI (optional; note this also
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causes those infecteds to cease transmitting the disease).

• Let vaccinateds enter the population at some rate, e.g., n (optional).

Question 2 [ 10/23 points ] The model of logistic growth incorporates competition by
assuming the number of surviving individuals per parent, R, declines linearly with the
size of the population, R(n) = 1+r(1−n/k). This increases as the number of individuals,
n, declines to 0. But in some populations offspring production may be impaired when
there are too few individuals, e.g., when it is difficult to find mates (this is called an Allee
effect). To model an Allee effect we can write the number of surviving individuals per
parent as R(n) = 1 + r(1− n/k)(n− a)/(k − a), with 0 < a < k. The recursion equation
for the size of the population is n(t+ 1) = R(n)n(t).

a. [ 3 points ] Find the equilibrium values of n.

Answer

Letting n(t + 1) = n(t) = n̂ the equilibria are the solutions to n̂ = R(n̂)n̂.
Therefore one solution is n̂ = 0 and the others are determined by

1 = R(n̂)

1 = 1 + r(1− n̂/k)(n̂− a)/(k − a)

0 = r(1− n̂/k)(n̂− a)/(k − a)

giving n̂ = a and n̂ = k.

b. [ 6 points ] Determine the stability of each equilibrium assuming r > 0.

Answer

Let f(n(t)) = n(t + 1) = R(n(t))n(t). Then stability is determined by the
derivative f ′(n). Using the product rule this is f ′(n) = R′(n)n + R(n), with
R′(n) = r((−1/k)(n−a)/(k−a)+(1−n/k)(1/(k−a))) (again using the product
rule). It will be more convenient to keep the structure of the original equations
rather than expanding this out.

We need |f ′(n)| < 1 for stability since this is a discrete-time model.

When n̂ = 0 we have f ′(0) = R′(0)0 +R(0) = R(0) = 1 + r(−a/(k− a)). Given
0 < k < a and r > 0 we have f ′(0) < 1 and therefore we need f ′(0) > −1 for
stability. The latter is true when r(−a/(k − a)) > −2 or, dividing by −1 (and
reversing the inequality), when ra/(k−a) < 2 (i.e., small r and a, large k). But
note that given that we have defined R(n) as the number of surviving individuals
per parent, we should always have R(n) >= 0, and therefore f ′(0) = R(0) > 0,
which places the a stricter bound on our parameters, ra/(k− a) < 1. This also
implies there is no cycling around n̂ = 0 (which wouldn’t make sense biologically
because the population size would become negative).
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When n̂ = a we have f ′(a) = R′(a)a + R(a) = r(1 − a/k)(1/(k − a))a + 1 =
ra/k + 1. Given 0 < k < a and r > 0 we have f ′(a) > 1 and therefore n̂ = a is
unstable (and there are no cycles).

When n̂ = k we have f ′(k) = R′(k)k + R(k) = r(−1/k)(k − a)/(k − a)k + 1 =
−r + 1. Given r > 0 we have f ′(k) < 1 and therefore we need f ′(k) > −1 for
stability. This is true when −r > −2, or r < 2 (as in the standard logistic case;
if r is too large we can get cycles or chaos or extinction).

c. [ 1 points ] Assume that a population of woodland caribou follows these dynamics.
If this population disappeared from an area and we wanted to re-introduce them,
what is the minimum population size we should start with?

Answer

Given that n̂ = a is unstable, we’d need to introduce more than a individuals if
we want the population to persist (and we’d hope r was small enough that the
population doesn’t eventually overshoot k so much as to go extinct in the next
time step).

Question 3 [ 9/23 points ] Historically, we’ve typically assumed populations are well
adapted to their environments. That is, we’ve assumed they have trait values that closely
match the trait values that optimize fitness. With climate change this may no longer
be the case, and an important question is how well populations can evolutionarily track
changes in optimal trait values. A simple, and common, model for a population evolving
in a changing environment is

dz

dt
= vγ(o− z) (1)

do

dt
= k (2)

where z is the population mean trait value, o is the optimal trait value, v is the amount
of genetic variance in the trait (assumed constant), γ is the strength of selection on the
trait (assumed constant), and k is the rate of environmental change (assumed constant).

This is a multivariate model (two variables, z and o), but we can make it univariate
by switching our perspective to think about the lag of the mean trait value behind the
optimal with a transformation, L = o− z.

a. [ 1 points ] Write the differential equation for the change in lag, L, in terms of L
alone (i.e., there should be no o or z in this equation).

Answer
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We use the fact that the derivative of a sum is the sum of the derivatives

dL

dt
=

d(o− z)

dt
dL

dt
=

do

dt
− dz

dt
dL

dt
= k − vγ(o− z)

dL

dt
= k − vγL

b. [ 1 points ] What is the equilibrium lag?

Answer

We set the change in L to zero and solve for L̂

0 = k − vγL̂
L̂ = k/(vγ)

c. [ 2 points ] Determine the stability of the equilibrium (assume all parameters are
positive).

Answer

Let f(L) = dL
dt

= k−vγL. Stability is determined by the derivative f ′(L) = −vγ.

Since this is continuous-time model we need f ′(L) < 0 for stability, which is
guaranteed as long as v and γ have the same sign (and given v is a variance,
which is always positive, we need both to be positive – when γ > 0 we have
what is called stabilizing selection).

d. [ 1 points ] Assuming the population goes extinct when the equilibrium lag is greater
than some critical value, Lc, what is the fastest rate of environmental change a
population can persist under?

Answer

Here we set the equilibrium lag equal to the critical lag and solve for the so-called
critical rate of environmental change, kc.

kc/(vγ) = Lc =⇒ kc = Lcvγ

(Note, in a more realistic model the critical lag Lc will depend on the amount of
genetic variance in the population and the strength of selection, both of which
positively contribute to something called variance load, which reduces fitness
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and thus the critical lag.)

e. [ 3 points ] Use separation of variables to find the lag as a function of time, L(t),
assuming the population is initially perfectly adapted, L(0) = 0. [Hint, the integral
of 1/(a− bx) with respect to x is − ln(a− bx)/b.]

Answer

dL

dt
= k − vγL

dL

k − vγL
= dt∫

dL

k − vγL
=

∫
dt

− ln(k − vγL)/(vγ) = t+ c

ln(k − vγL) = −vγ(t+ c)

k − vγL = e−vγ(t+c)

L =
k − e−vγ(t+c)

vγ

Now using L(0) = 0 we see 0 = k − evγc =⇒ evγc = k so that e−vγ(t+c) =
e−vγte−vγc = e−vγtk. Subbing this in to the above and simplifying we get

L(t) =
k(1− e−vγt)

vγ

f. [ 1 points ] Check your answer in (e) by comparing what happens as t goes to infinity
to your answer in (b).

Answer

As t→∞ we have e−vγt → 0 (given vγ > 0) so that limt→∞ L(t) = k/(vγ) = L̂.

——— End of Exam ———
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