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Question 1 ( 8/8 points ) Many populations face continual environmental change, such
as climate warming. Our understanding of how populations will respond to this type
of environmental change is facilitated by so-called “moving optimum models”. In these
models the environmentally-determined phenotype that maximizes fitness, 6, increases
linearly at rate ¢. The mean phenotype of the population, z, evolves to track this moving
optimum, via selection to reduce the mean lag, ¢ = 6 — z. Persistence requires the
equilibrium lag to not be too big. Here we’ll examine the effect of density-dependent
population growth on the predictions of the moving optimum model, following Klausmeier
et al. 2020 (Phil. Trans. B).

(a) The simplest scenario is when selection and density-dependence do not interact.
This occurs, for example, when birth depends on the mean lag and death depends
on the population size, or vice-versa. We consider the former with the following
model of population size, n, and mean lag, ¢,

dn
s =n (b—~0*/2 - dn)

d/ 0 (1dn ’
—=c—v— | —— | =c— vl
dt o0 \ n dt K

Here the mean birth rate, b — v¢2/2, is reduced by the lag and the death rate, dn,
increases with population size. The dynamics of the mean lag, are then independent
of population size, increasing due to environmental change, ¢, and decreasing by

evolution, vy¢, where v is the amount of genetic variance in the trait and v is the
strength of selection.

~

(i) ( 1 points ) Show how to find the equilibrium lag, ¢ = ¢/(v7y), and the two
population size equilibria, 7 = 0 and 1 = (b — ¢?/(2v*y))/d.

Answer

We start with the lag equation, as it does not depend on population size,
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Now we can sub this into the population size equation and solve,

dn
——
dt

A(b—y0?)2 — di) = 0

ﬁ<b—7(£>2/2—dﬁ>:0 (2)

C2
A (b — —dn) =0.
n( 2v2y n)

So either n = 0 or we can divide by n to find
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—dn=20
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2 .
(b — 21)27) /d =n.

(ii) ( 2 points ) Show how to determine that the second equilibrium, £ = ¢/(v7) and
n = (b— c?/(2v*y))/d, is stable when 7 > 0.

(3)

Answer

The Jacobian is

odn 0dn
- (2% 7%)

dndt dLdt
<b — 022 — 2dn —n’yf)
J= :
0 —vy

Evaluating at the n > 0 equilibrium,

mﬁmﬁ=t@‘%ﬁ‘@‘§ﬁa- (5)

0 —vy

This is a triangular matrix, and so the eigenvalues are along the diagonal,

n=-(0-5m;) ©

Ay = —07.

The second is never positive and the first is negative as long as n > 0 (since we
see that we can write 1 = —\;/d).

(iii) ( 1 points ) Assuming, 7 = (b— c*/(2v%y))/d, is stable, what is the fastest rate
of environmental change that allows long-term persistence? We call this the critical
rate of environmental change.
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Answer
We have persistence as long as n > 0, and so we can find the critical rate by
solving
n =70
2
b— d=20
( 2v2’y> /
2
b——— =0 (7)
202y
& = 2y
c = v/ 2by.

(b) Now consider a scenario where selection and density-dependence interact, e.g., when
death depends on both trait value and population size,

i—?:n(b—(d+’y€2/2)n)
e _ o (Ldn\ _
a Yo \na) T

~

(i) ( 1 points ) Show how to determine that at equilibrium, ¢ = ¢/(vyn), with
fo= (b4 /b —2dc2/(v2y))/(2d).

Answer

We start with the lag equation,

de
dt
c—vybn = (8)
=<
vyn

Now we can sub this into the population size equation and solve,

dn
— =0
dt

A(b — (d+~0?/2)h) =0
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So either n = 0 or we can divide by 7 to find

02
b—(d i =0
< i 2v2vﬁ2)n

(10)

_ bt /% — 2dc?/(v?y)
B 2d ’

where we used the quadratic equation in the last step.

(ii) ( 1 points ) Explain why, mathematically, these two equilibria are biologically
invalid when b%v%y < 2dc?.

Answer

The equilibrium population size has an imaginary part when the term inside
the square root becomes negative,

b? —2dc?/(v*y) < 0

b? < 2dc?/(v?y) (11)
b’y < 2dc.

Since, { = ¢/(vyn), the lag will then also have an imaginary part.

(iii) ( 1 points ) To determine stability we construct the Jacobian. Evaluating at
f = (b+ /b* — 2dc?/(v?7))/(2d) we find that the trace and determinant are

b(2d + vy) + /7 (b202y — 2dc?)

Tr(J) = — 54
bRoy — 2dc? b202 — 2dc?
Det(3) = 200 C/v+2\d/v( vPy = 2dc?)

Explain why we can conclude that this equilibrium is stable when b*v2y > 2dc?. It
turns out the other equilibrium is unstable under these conditions.

Answer

By the Routh-Hurwitz criteria for a 2x2 Jacobian in continuous-time, stability
requires a negative trace and positive determinant. We can see that the trace
is always negative. And given b?v?y > 2dc?, the determinant is positive.

Note that when b?v?y = 2dc? the equilibrium population size is 7 = b/(2d) > 0 but
when we increase the rate of environmental change ¢ a little further the equilibria
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become invalid — biologically, the rate of environmental change ¢ = bv/7/(2d), is
a tipping point beyond which populations suddenly go extinct.

( 1 points ) The stable equilibrium of each model (a and b) is plotted below as a
function of the rate of environmental change. Only in the second model (b) do we
see a tipping point (in the first model the equilibium is a continuous function of ¢).
Tipping points typically arise when there are positive feedbacks in a system. In 1-3
sentences, explain what the positive feedback in the second model is in biological
terms.

(a) (b)
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Answer

In both models, death rates increase with density, meaning that when the pop-
ulation size is large there are lots of deaths. In the second model, death is
also where selection happens, meaning evolution happens faster in larger pop-
ulations. There is therefore a positive feedback between population size and
adaptive evolution in the second model — from which the tipping point arises.

End of Exam ———
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