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Question 1 ( 8/8 points ) Many populations face continual environmental change, such
as climate warming. Our understanding of how populations will respond to this type
of environmental change is facilitated by so-called “moving optimum models”. In these
models the environmentally-determined phenotype that maximizes fitness, θ, increases
linearly at rate c. The mean phenotype of the population, z̄, evolves to track this moving
optimum, via selection to reduce the mean lag, ℓ = θ − z̄. Persistence requires the
equilibrium lag to not be too big. Here we’ll examine the effect of density-dependent
population growth on the predictions of the moving optimum model, following Klausmeier
et al. 2020 (Phil. Trans. B).

(a) The simplest scenario is when selection and density-dependence do not interact.
This occurs, for example, when birth depends on the mean lag and death depends
on the population size, or vice-versa. We consider the former with the following
model of population size, n, and mean lag, ℓ,

dn

dt
= n

(
b− γℓ2/2− dn

)
dℓ

dt
= c− v

∂

∂ℓ

(
1

n

dn

dt

)
= c− vγℓ.

Here the mean birth rate, b − γℓ2/2, is reduced by the lag and the death rate, dn,
increases with population size. The dynamics of the mean lag, are then independent
of population size, increasing due to environmental change, c, and decreasing by
evolution, vγℓ, where v is the amount of genetic variance in the trait and γ is the
strength of selection.

(i) ( 1 points ) Show how to find the equilibrium lag, ℓ̂ = c/(vγ), and the two
population size equilibria, n̂ = 0 and n̂ = (b− c2/(2v2γ))/d.

Answer

We start with the lag equation, as it does not depend on population size,

dℓ

dt
= 0

c− vγℓ̂ = 0

ℓ̂ =
c

vγ
.

(1)
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Now we can sub this into the population size equation and solve,

dn

dt
= 0

n̂(b− γℓ̂2/2− dn̂) = 0

n̂

(
b− γ

(
c

vγ

)2

/2− dn̂

)
= 0

n̂

(
b− c2

2v2γ
− dn̂

)
= 0.

(2)

So either n̂ = 0 or we can divide by n̂ to find

b− c2

2v2γ
− dn̂ = 0(

b− c2

2v2γ

)
/d = n̂.

(3)

(ii) ( 2 points ) Show how to determine that the second equilibrium, ℓ̂ = c/(vγ) and
n̂ = (b− c2/(2v2γ))/d, is stable when n̂ > 0.

Answer

The Jacobian is

J =

(
∂
∂n

dn
dt

∂
∂ℓ

dn
dt

∂
∂n

dℓ
dt

∂
∂ℓ

dℓ
dt

)
J =

(
b− γℓ2/2− 2dn −nγℓ

0 −vγ

)
.

(4)

Evaluating at the n̂ > 0 equilibrium,

J|n=n̂>0,ℓ=ℓ̂ =

(
−
(
b− c2

2v2γ

)
−
(
b− c2

2v2γ

)
c
v

0 −vγ

)
. (5)

This is a triangular matrix, and so the eigenvalues are along the diagonal,

λ1 = −
(
b− c2

2v2γ

)
λ2 = −vγ.

(6)

The second is never positive and the first is negative as long as n̂ > 0 (since we
see that we can write n̂ = −λ1/d).

(iii) ( 1 points ) Assuming, n̂ = (b− c2/(2v2γ))/d, is stable, what is the fastest rate
of environmental change that allows long-term persistence? We call this the critical
rate of environmental change.
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Answer

We have persistence as long as n̂ > 0, and so we can find the critical rate by
solving

n̂ = 0(
b− c2

2v2γ

)
/d = 0

b− c2

2v2γ
= 0

c2 = 2bv2γ

c = v
√

2bγ.

(7)

(b) Now consider a scenario where selection and density-dependence interact, e.g., when
death depends on both trait value and population size,

dn

dt
= n

(
b− (d+ γℓ2/2)n

)
dℓ

dt
= c− v

∂

∂ℓ

(
1

n

dn

dt

)
= c− vγℓn.

(i) ( 1 points ) Show how to determine that at equilibrium, ℓ̂ = c/(vγn̂), with
n̂ = (b±

√
b2 − 2dc2/(v2γ))/(2d).

Answer

We start with the lag equation,

dℓ

dt
= 0

c− vγℓ̂n̂ = 0

ℓ̂ =
c

vγn̂
.

(8)

Now we can sub this into the population size equation and solve,

dn

dt
= 0

n̂(b− (d+ γℓ̂2/2)n̂) = 0

n̂

(
b−

(
d+ γ

(
c

vγn̂

)2

/2

)
n̂

)
= 0

n̂

(
b−

(
d+

c2

2v2γn̂2

)
n̂

)
= 0.

(9)
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So either n̂ = 0 or we can divide by n̂ to find

b−
(
d+

c2

2v2γn̂2

)
n̂ = 0

b− dn̂− c2

2v2γn̂
= 0

−dn̂2 + bn̂− c2

2v2γ
= 0

n̂ =
b±

√
b2 − 2dc2/(v2γ)

2d
,

(10)

where we used the quadratic equation in the last step.

(ii) ( 1 points ) Explain why, mathematically, these two equilibria are biologically
invalid when b2v2γ < 2dc2.

Answer

The equilibrium population size has an imaginary part when the term inside
the square root becomes negative,

b2 − 2dc2/(v2γ) < 0

b2 < 2dc2/(v2γ)

b2v2γ < 2dc2.

(11)

Since, ℓ̂ = c/(vγn̂), the lag will then also have an imaginary part.

(iii) ( 1 points ) To determine stability we construct the Jacobian. Evaluating at
n̂ = (b+

√
b2 − 2dc2/(v2γ))/(2d) we find that the trace and determinant are

Tr(J) = −
b(2d+ vγ) +

√
γ(b2v2γ − 2dc2)

2d

Det(J) =
b2vγ − 2dc2/v +

√
γ(b2v2γ − 2dc2)

2d
.

Explain why we can conclude that this equilibrium is stable when b2v2γ > 2dc2. It
turns out the other equilibrium is unstable under these conditions.

Answer

By the Routh-Hurwitz criteria for a 2x2 Jacobian in continuous-time, stability
requires a negative trace and positive determinant. We can see that the trace
is always negative. And given b2v2γ > 2dc2, the determinant is positive.

Note that when b2v2γ = 2dc2 the equilibrium population size is n̂ = b/(2d) > 0 but
when we increase the rate of environmental change c a little further the equilibria
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become invalid – biologically, the rate of environmental change c = bv
√

γ/(2d), is
a tipping point beyond which populations suddenly go extinct.

(c) ( 1 points ) The stable equilibrium of each model (a and b) is plotted below as a
function of the rate of environmental change. Only in the second model (b) do we
see a tipping point (in the first model the equilibium is a continuous function of c).
Tipping points typically arise when there are positive feedbacks in a system. In 1-3
sentences, explain what the positive feedback in the second model is in biological
terms.

Answer

In both models, death rates increase with density, meaning that when the pop-
ulation size is large there are lots of deaths. In the second model, death is
also where selection happens, meaning evolution happens faster in larger pop-
ulations. There is therefore a positive feedback between population size and
adaptive evolution in the second model – from which the tipping point arises.

——— End of Exam ———
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